

BIRMINGHAM—MUMBAI

Serverless Machine Learning with
Amazon Redshift ML
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

Group Product Manager: Niranjan Naikwadi

Publishing Product Manager: Ali Abidi

Book Project Manager: Farheen Fathima

Senior Editor: Tazeen Shaikh

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Prashant Ghare

DevRel Marketing Coordinator: Vinishka Kalra

First published: August 2023

Production reference: 1280823

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80461-928-5

To my wife, Renuka, and my kids, Nistha and Nisheet, who make my
life exciting every day!

– Debu Panda

To my wife, Patty, who encourages me daily, and all those who
supported me in this endeavor.

– Phil Bates

To my wonderful family – my wife, Kavitha, and my daughters, Vibha
and Medha.

– Bhanu Pittampally

To my wife, Leena, my daughter, Ananya, my parents, and my brother,
Neeraj, for their support and encouragement for all these years –
especially my wife, who always supports me in all walks of my life.

– Sumeet Joshi

Foreword
In today’s fast-paced technological landscape, the convergence of serverless
computing and machine learning has transformed the way we approach data
analytics and decision-making. As the demand for scalable solutions
continues to rise, the need for accessible tools that bridge the gap between
complex algorithms and user-friendly interfaces has become paramount.

In Serverless Machine Learning with Amazon Redshift ML, the authors
embark on a journey that empowers users, regardless of prior machine
learning experience, to harness the power of data-driven insights. By
leveraging simple SQL commands, this book will walk you through how to
solve complex problems using different machine learning algorithms with
ease. Gone are the days of steep learning curves and complex coding – this
book paves the way for a new era and describes how Amazon Redshift ML
democratized machine learning.

Through a balanced approach of theory and hands-on exercises, this book
guides you through the fundamentals of machine learning concepts while
showcasing how Amazon Redshift ML serves as the cornerstone of this
revolutionary approach. The authors walk you through the benefits of
serverless computing, demonstrating how it not only enhances the process
of training your machine learning models but also streamlines the entire
process.

Whether you’re a seasoned machine learning professional or are just
starting on your machine learning journey now, this book will provide the

roadmap you need. The authors are authoritative sources on the topics who
defined Redshift ML and work with customers to make them successful
with a variety of use cases, such as product recommendation, churn
prediction, revenue forecasting, and many more. Enjoy your journey to
machine learning and allow the book to unlock the potential of machine
learning in your Amazon Redshift data warehouse one simple SQL
command at a time.

Colin Mahony

GM, Amazon Redshift, AWS

Contributors

About the authors
Debu Panda, a senior manager in product management at AWS, is an
industry leader in analytics, application platforms, and database
technologies, and he has more than 25 years of experience in the IT world.
Debu has published numerous articles on analytics, enterprise Java, and
databases, and he has presented at multiple conferences, such as re:Invent,
Oracle Open World, and Java One. He is the lead author of EJB 3 in Action
(Manning Publications, 2007 and 2014) and Middleware Management
(Packt Publishing, 2009).

I want to thank the people who supported me, especially my wife,
Renuka, my kids, Nistha and Nisheet, and my parents.

Phil Bates is a senior analytics specialist solutions architect at AWS. He
has more than 25 years of experience implementing large-scale data
warehouse solutions. He is passionate about helping customers through
their cloud journey and leveraging the power of machine learning within
their data warehouse. Phil has written several blogs on Amazon Redshift
ML and presented at re:Invent and AWS summits. He enjoys golf and
hiking and lives with his wife in Roswell, Georgia.

Bhanu Pittampally is a seasoned professional with over 15 years of
invaluable experience in the realm of data and analytics. With an extensive
background in data lakes, data warehouses, and cloud technologies, Bhanu
has consistently demonstrated a deep understanding of the ever-evolving
landscape of data management.

Armed with a wealth of knowledge and two advanced degrees – a master of
science and an MBA – Bhanu combines academic rigor with practical
insight to provide his clients with comprehensive solutions to their intricate
worlds of data.

Sumeet Joshi is a solutions architect/data scientist based out of New York.
He specializes in building large-scale data warehousing and business
intelligence solutions. He has over 19 years of experience in the data
warehousing and analytical space.

About the reviewers

Anand Prakash is a senior data scientist at Amazon, based in Seattle,
USA. He has a strong passion for technology solutions, particularly in ML,
MLOps, and big data. Anand is always eager to learn and grow
professionally, constantly seeking new knowledge and opportunities. He
shares his knowledge on various tech topics through his writing at . He
holds a bachelor’s degree in electronics and communication from the
Northeastern Regional Institute of Science and Technology (NERIST),
Arunachal Pradesh, India.

Anusha Challa’s journey as a data warehousing specialist has allowed her
to work with multiple large-scale customers of Amazon Redshift and AWS
analytics services. Along this path, she’s had the privilege of collaborating
with brilliant minds, while the steadfast support of her cherished family and
friends has been her constant driving force. Keen to fuel her spirit of
continuous learning, she finds inspiration in working with data – a realm
that perpetually evolves and expands – making each step in data
warehousing and ML an exciting journey of exploration and growth.

Guided by insights gained from her master’s degree in ML, she is happy to
contribute a review of this book, which presents diverse methods
integrating data warehousing and ML, thus broadening the horizons of what
data warehouses can encompass.

Table of Contents

Preface

Part 1: Redshift Overview: Getting
Started with Redshift Serverless and an
Introduction to Machine Learning

1

Introduction to Amazon Redshift
Serverless

What is Amazon Redshift?
Getting started with Amazon Redshift
Serverless
What is a namespace?
What is a workgroup?
Connecting to your data warehouse
Using Amazon Redshift query editor v2
Loading sample data
Running your first query
Summary

2

Data Loading and Analytics on Redshift
Serverless

Technical requirements
Data loading using Amazon Redshift Query
Editor v2
Creating tables
Loading data from Amazon S3
Loading data from a local drive
Data loading from Amazon S3 using the COPY
command
Loading data from a Parquet fi le
Automating file ingestion with a COPY job
Best practices for the COPY command
Data loading using the Redshift Data API
Creating table
Loading data using the Redshift Data API
Summary

3

Applying Machine Learning in Your Data
Warehouse

Understanding the basics of ML
Comparing supervised and unsupervised
learning
Classification
Regression
Traditional steps to implement ML
Data preparation
Evaluating an ML model
Overcoming the challenges of implementing ML
today
Exploring the benefits of ML
Application of ML in a data warehouse
Summary

Part 2: Getting Started with Redshift ML

4

Leveraging Amazon Redshift ML

Why Amazon Redshift ML?
An introduction to Amazon Redshift ML
A CREATE MODEL overview
AUTO everything
AUTO with user guidance
XGBoost (AUTO OFF)
K-means (AUTO OFF)
BYOM
Summary

5

Building Your First Machine Learning
Model

Technical requirements
Redshift ML simple CREATE MODEL

Uploading and analyzing the data
Diving deep into the Redshift ML CREATE
MODEL syntax
Creating your first machine learning model
Evaluating model performance
Checking the Redshift ML objectives
Running predictions
Comparing ground truth to predictions
Feature importance
Model performance
Summary

6

Building Classification Models

Technical requirements
An introduction to classification algorithms
Diving into the Redshift CREATE MODEL syntax
Training a binary classification model using the
XGBoost algorithm
Establishing the business problem
Uploading and analyzing the data

Using XGBoost to train a binary classification
model
Running predictions
Prediction probabilities
Training a multi-class classification model
using the Linear Learner model type
Using Linear Learner to predict the customer
segment
Evaluating the model quality
Running prediction queries
Exploring other CREATE MODEL options
Summary

7

Building Regression Models

Technical requirements
Introducing regression algorithms
Redshift’s CREATE MODEL with user guidance
Creating a simple linear regression model using
XGBoost
Uploading and analyzing the data
Splitting data into training and validation sets

Creating a simple linear regression model
Running predictions
Creating multi-input regression models
Linear Learner algorithm
Understanding model evaluation
Prediction query
Summary

8

Building Unsupervised Models with K-
Means Clustering

Technical requirements
Grouping data through cluster analysis
Determining the optimal number of clusters
Creating a K-means ML model
Creating a model syntax overview for K-means
clustering
Uploading and analyzing the data
Creating the K-means model
Evaluating the results of the K-means
clustering

Summary

Part 3: Deploying Models with Redshift
ML

9

Deep Learning with Redshift ML

Technical requirements
Introduction to deep learning
Business problem
Uploading and analyzing the data
Prediction goal
Splitting data into training and test datasets
Creating a multiclass classification model using
MLP
Running predictions
Summary

10

Creating a Custom ML Model with
XGBoost

Technical requirements
Introducing XGBoost
Introducing an XGBoost use case
Defining the business problem
Uploading, analyzing, and preparing data for
training
Splitting data into train and test datasets
Preprocessing the input variables
Creating a model using XGBoost with Auto Off
Creating a binary classification model using
XGBoost
Generating predictions and evaluating model
performance
Summary

11

Bringing Your Own Models for Database
Inference

Technical requirements
Benefits of BYOM
Supported model types
Creating the BYOM local inference model

Creating a local inference model
Running local inference on Redshift
BYOM using a SageMaker endpoint for remote
inference
Creating BYOM remote inference
Generating the BYOM remote inference
command
Summary

12

Time-Series Forecasting in Your Data
Warehouse

Technical requirements
Forecasting and time-series data
Types of forecasting methods
What is time-series forecasting?
Time trending data
Seasonality
Structural breaks
What is Amazon Forecast?
Configuration and security

Creating forecasting models using Redshift ML
Business problem
Uploading and analyzing the data
Creating a table with output results
Summary

13

Operationalizing and Optimizing Amazon
Redshift ML Models

Technical requirements
Operationalizing your ML models
Model retraining process without versioning
The model retraining process with versioning
Automating the CREATE MODEL statement for
versioning
Optimizing the Redshift models’ accuracy
Model quality
Model explainability
Probabilities
Using SageMaker Autopilot notebooks
Summary

Index

Other Books You May Enjoy

Preface
Amazon Redshift Serverless enables organizations to run petabyte-scale
cloud data warehouses quickly and in a cost-effective way, enabling data
science professionals to efficiently deploy cloud data warehouses and
leverage easy-to-use tools to train models and run predictions. This
practical guide will help developers and data professionals working with
Amazon Redshift data warehouses to put their SQL knowledge to work for
training and deploying machine learning models.

The book begins by helping you to explore the inner workings of Redshift
Serverless as well as the foundations of data analytics and types of data
machine learning. With the help of step-by-step explanations of essential
concepts and practical examples, you’ll then learn to build your own
classification and regression models. As you advance, you’ll find out how
to deploy various types of machine learning projects using familiar SQL
code, before delving into Redshift ML. In the concluding chapters, you’ll
discover best practices for implementing serverless architecture with
Redshift.

By the end of this book, you’ll be able to configure and deploy Amazon
Redshift Serverless, train and deploy machine learning models using
Amazon Redshift ML, and run inference queries at scale.

Who this book is for
Data scientists and machine learning developers working with Amazon
Redshift who want to explore its machine-learning capabilities will find this
definitive guide helpful. A basic understanding of

machine learning techniques and working knowledge of Amazon Redshift
is needed to make the most of this book.

What this book covers
Chapter 1, Introduction to Amazon Redshift Serverless, presents an
overview of Amazon Redshift and Redshift Serverless, walking you
through how to get started in just a few minutes and connect using Redshift
Query Editor v2. You will create a sample database and run queries using
the Notebook feature.

Chapter 2, Data Loading and Analytics on Redshift Serverless, helps you
learn different mechanisms to efficiently load data into Redshift Serverless.

Chapter 3, Applying Machine Learning in Your Data Warehouse, introduces
machine learning and common use cases to apply to your data warehouse.

Chapter 4, Leveraging Amazon Redshift Machine Learning, builds on
Chapter 3. Here, we dive into Amazon Redshift ML, learning how it works
and how to leverage it to solve use cases.

Chapter 5, Building Your First Machine Learning Model, sees you get
hands-on with Amazon Redshift ML and build your first model using
simple CREATE MODEL syntax.

Chapter 6, Building Classification Models, covers classification problems
and the algorithms you can use in Amazon Redshift ML to solve these
problems and learn how to create a model with user guidance.

Chapter 7, Building Regression Models, helps you identify whether a
problem involves regression and explores the different methods available in
Amazon Redshift ML for training and building regression models.

Chapter 8, Building Unsupervised Models with K-Means Clustering, shows
you how to build machine learning models with unlabeled data and make
predictions at the observation level using K-means clustering.

Chapter 9, Deep Learning with Redshift ML, covers the use of deep
learning in Amazon Redshift ML using the MLP model type for data that is
not linearly separable.

Chapter 10, Creating Custom ML Model with XGBoost, shows you how to
use the Auto Off option of Amazon Redshift ML to prepare data in order to
build a custom model.

Chapter 11, Bring Your Own Models for In-Database Inference, goes
beyond Redshift ML models. Up to this point in the book, we will have run
inference queries only on models built directly in Amazon Redshift ML.
This chapter shows how you can leverage models built outside of Amazon
Redshift ML and execute inference queries inside Amazon Redshift ML.

Chapter 12, Time-Series Forecasting in Your Data Warehouse, dives into
forecasting and time-series data using the integration of Amazon Forecast
with Amazon Redshift ML.

Chapter 13, Operationalizing and Optimizing Amazon Redshift ML Models,
concludes the book by showing techniques to refresh your model, create
versions of your models, and optimize your Amazon Redshift ML models.

To get the most out of this book
You will need access to an AWS account to perform code examples in this
book. You will need either to have administrator access or to work with an

administrator to create a Redshift Serverless data warehouse and the IAM
user, roles, and policies used in this book.

Software/hardware covered in the
book

Operating system
requirements

The AWS CLI (optional) Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book’s GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift. If there’s an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift
https://github.com/PacktPublishing/

and Twitter handles. Here is an example: “Mount the downloaded
WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

cnt = client.execute_statement(Database='dev',

 Sql='Select count(1) from chapter2.orders;',

 WorkgroupName=REDSHIFT_WORKGROUP)

query_id = cnt["Id"]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

SHOW MODEL chapter5_buildfirstmodel.customer_churn_model;

Any command-line input or output is written as follows:

$ pip install pandas

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.
Here is an example: “Select System info from the Administration panel.”

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

mailto:customercare@packtpub.com

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Serverless Machine Learning with Amazon Redshift ML,
we’d love to hear your thoughts! Please click here to go straight to the
Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of
your choice?

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1-804-61928-0

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-928-5

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email
directly

clbr://internal.invalid/book/OEBPS/B19071_Preface.xhtml

Part 1:Redshift Overview: Getting Started
with Redshift Serverless and an
Introduction to Machine Learning
Reaping the benefits of machine learning across an organization requires
access to data, easy-to-use tools, and built-in algorithms that anyone can use
no matter their level of experience with machine learning.

Part 1 shows how easy it is to get started with Amazon Redshift Serverless
and Amazon Redshift ML without having to manage data warehouse
infrastructure.

By the end of Part 1, you will know how to run queries using Query Editor
v2 notebooks and different techniques for loading data into Amazon
Redshift Serverless. You will then be introduced to machine learning and
gain an understanding of how you can use machine learning in your data
warehouse.

This part comprises the following chapters:

Chapter 1, Introduction to Amazon Redshift Serverless

Chapter 2, Data Loading and Analytics on Redshift Serverless

Chapter 3, Applying Machine Learning in Your Data Warehouse

1

Introduction to Amazon Redshift
Serverless
“Hey, what’s a data warehouse?” John Doe, CEO and co-founder of
Red.wines, a fictional specialty wine e-commerce company, asked Tathya
Vishleshak*, the company’s CTO. John, who owned a boutique winery, had
teamed up with Tathya for the project. The company’s success surged
during the pandemic, driven by social media and the stay-at-home trend.
John wanted detailed data analysis to align inventory and customer
outreach. However, there was a problem – producing this analysis was
slowing down their online transaction processing (OLTP) database.

“A data warehouse is like a big database where we store different data for a
long time to find insights and make decisions,” Tathya explained.

John had a concern, “Sounds expensive; we’re already paying for unused
warehouse space. Can we afford it?”

Tathya reassured him, “You’re right, but there are cloud data warehouses
such as Amazon Redshift Serverless that let you pay as you use.”

Expanding on this, this chapter introduces data warehousing and Amazon
Redshift. We’ll cover Amazon Redshift Serverless basics, such as
namespaces and workgroups, and guide you in creating a data warehouse.
Amazon Redshift can gather data from various sources, mainly Amazon
Simple Storage Service (S3).

As we go through this chapter, you’ll learn about a crucial aspect of this, the
AWS Identity and Access Management (IAM) role, needed for loading
data from S3. This role connects to your Serverless namespace for smooth
data transfer. You’ll also learn how to load sample data and run queries
using Amazon Redshift query editor. Our goal is to make it simple and
actionable, so you’re confident in navigating this journey.

TATHYA VISHLESHAK
The phrase 'Tathya Vishleshak' can be loosely interpreted to reflect the concept of a data
analyst in Sanskrit/Hindi. However, it's important to note that this is not a precise or
established translation, but rather an attempt to convey a similar meaning based on the
individual meanings of the words 'Tathya' and 'Vishleshak' in Sanskrit.

Additionally, Amazon Redshift is used to analyze structured and
unstructured data in data warehouses, operational databases, and data lakes.
It’s employed for traditional data warehousing, business intelligence, real-
time analytics, and machine learning/predictive analytics. Data analysts and
developers use Redshift data with machine learning (ML) models for tasks
such as predicting customer behavior. Amazon Redshift ML streamlines
this process using familiar SQL commands.

The book delves into ML, explaining supervised and unsupervised training.
You’ll learn about problem-solving with binary classification, multi-class
classification, and regression using real-world examples. You’ll also
discover how to create deep learning models and custom models with
XGBoost, as well as use time series forecasting. The book also covers in-
database and remote inferences using existing models, applying ML for
predictive analytics, and operationalizing machine learning models.

The following topics will be covered in this chapter:

What is Amazon Redshift?

Getting started with Amazon Redshift Serverless

Connecting to your data warehouse

This chapter requires a web browser and access to an AWS account.

What is Amazon Redshift?
Organizations churn out vast troves of customer data along with insights
into these customers’ interactions with the business. This data gets funneled
into various applications and stashed away in disconnected systems. A
conundrum arises when attempting to decipher these data silos – a
formidable challenge that hampers the derivation of meaningful insights
essential for organizational clarity. Adding to this complexity, security and
performance considerations typically muzzle business analysts from
accessing data within OLTP systems.

The hiccup is that intricate analytical queries weigh down OLTP databases,
casting a shadow over their core operations. Here, the solution is the data
warehouse, which is a central hub of curated data, used by business
analysts and data scientists to make informed decisions by employing the
business intelligence and machine learning tools at their disposal. These
users make use of Structured Query Language (SQL) to derive insights
from this data trove. From operational systems, application logs, and social
media streams to the influx of IoT device-generated data, customers
channel structured and semi-structured data into organizations’ data

warehouses, as depicted in Figure 1.1, showcasing the classic architecture
of a conventional data warehouse.

Figure 1.1 – Data warehouse

Here’s where Amazon Redshift Serverless comes in. It’s a key option
within Amazon Redshift, a well-managed cloud data warehouse offered by
Amazon Web Services (AWS). With cloud-based ease, Amazon Redshift
Serverless lets you set up your data storage without infrastructure hassles or
cost worries. You pay based on what you use for compute and storage.

Amazon Redshift Serverless goes beyond convenience, propelling modern
data applications that seamlessly connect to the data lake. Enter the data
lake – a structure that gathers all data strands under one roof, providing
limitless space to store data at any scale, cost-effectively. Alongside other
data repositories such as data warehouses, data lakes redefine how
organizations handle data. And this is where it all comes together – the
following diagram shows how Amazon Redshift Serverless injects SQL-
powered queries into the data lake, driving a dynamic data flow:

Figure 1.2 – Data lake and data warehouse

So, let’s get started on creating our first data warehouse in the cloud!

Getting started with Amazon Redshift
Serverless
You can create your data warehouse with Amazon Redshift Serverless using
the AWS Command-Line Interface (CLI), the API, AWS
CloudFormation templates, or the AWS console. We are going to use the
AWS console to create a Redshift Serverless data warehouse. Log in to your
AWS console and search for Redshift in the top bar, as shown in Figure
1.3:

Figure 1.3 – AWS console page showing services filtered by our search for Redshift

Click on Amazon Redshift, which will take you to the home page for the
Amazon Redshift console, as shown in Figure 1.4. To help get you started,
Amazon provides free credit for first-time Redshift Serverless customers.
So, let’s start creating your trial data warehouse by clicking on Try

Amazon Redshift Serverless. If you or your organization has tried
Amazon Redshift Serverless before, you will have to pay for the service
based on your usage:

Figure 1.4 – Amazon Redshift service page in the AWS console

If you have free credit available, it will be indicated at the top of your
screen, as in Figure 1.5:

Figure 1.5 – AWS console showing the Redshift Serverless Get started page

You can either choose the defaults or use the customized settings to create
your data warehouse. The customized settings give you more control,
allowing you to specify many additional parameters for your compute
configuration including the workgroup, data-related settings such as the
namespace, and advanced security settings. We will use the customized
settings, which will help us customize the namespace settings for our
Serverless data warehouse. A namespace combined with a workgroup is
what makes a data warehouse with Redshift Serverless, as we will now see
in more detail.

What is a namespace?

Amazon Redshift Serverless provides a separation of storage and compute
for a data warehouse. A namespace is a collection of all your data stored in
the database such as your tables, views, database users, and their privileges.
You are separately charged for storage based on the size of the data stored
in your data warehouse. For compute, you are charged for the capacity used
over a given duration in Redshift processing hours (RPU) on a per
second-basis. The storage capacity is billed as Redshift managed storage
(RMS) and is billed by GB/month. You can view
https://aws.amazon.com/redshift/pricing/ for detailed pricing for your AWS
Region.

As a data warehouse admin, you can change the name of your data
warehouse namespace while creating the namespace. You can also change
your encryption settings, audit logging, and AWS IAM permissions, as

https://aws.amazon.com/redshift/pricing/

shown in Figure 1.6. The primary reason we are going to use customized
settings is to associate an IAM role with the namespace:

Figure 1.6 – Namespace configuration

AWS IAM allows you to specify which users or services can access other
services and resources in AWS. We will use that role for loading data from
S3 and training a machine learning model with Redshift ML that accesses
Amazon SageMaker.

If you have already created an IAM role earlier, you can associate with that
IAM role. If you have not created an IAM role, do so now by selecting the
Manage IAM roles option, as shown in Figure 1.7:

Figure 1.7 – Creating an IAM role and associating it via the AWS console

Then, select the Create IAM role option, as shown in Figure 1.8:

Figure 1.8 – Selecting the “Create IAM role” option

You can then create a default IAM role and provide appropriate permissions
to the IAM role to allow it to access S3 buckets, as shown in Figure 1.9:

Figure 1.9 – Granting S3 permissions to the IAM role

As shown in the preceding figure, select Any S3 bucket to enable Redshift
to read data from and write data to all S3 buckets you have created. Then,
select Create IAM role as default to create the role and set it as the default
IAM role.

Figure 1.10 – An IAM role was created but is not yet applied

As shown in Figure 1.10, we created the IAM role and associated it with
the namespace as a default role. Let’s next proceed to create a workgroup,
wherein we will set up the compute configuration for the data warehouse.

What is a workgroup?

As we discussed earlier, a namespace combined with a workgroup is what
makes a Redshift Serverless data warehouse. A workgroup provides the
compute resources required to process your data. It also provides the
endpoint for you to connect to the warehouse. As an admin, you need to
configure the compute settings such as the network and security
configuration for the workgroup.

We will not do any customization at this time and simply select the default
settings instead, including the VPC and associated subnets for the
workgroup, as shown in the following screenshot:

Figure 1.11 – Default settings and associated subnets for the workgroup

Click on the Save configuration button to create your Redshift Serverless
instance, and your first data warehouse will be ready in a few minutes:

Figure 1.12 – Redshift Serverless creation progress

Once your data warehouse is ready, you will be redirected to your
Serverless dashboard, as shown in Figure 1.13:

Figure 1.13 – Serverless dashboard showing your namespace and workgroup

Now that we have created our data warehouse, we will connect to the data
warehouse, load some sample data, and run some queries.

Connecting to your data warehouse

Your data warehouse with Redshift Serverless is now ready. You can
connect to your data warehouse using third-party tools via
JDBC/ODBC/Python drivers. Other options include the Data API or the
embedded Redshift query editor v2.

Using Amazon Redshift query editor v2

Now that your data warehouse is ready; let’s navigate to the query editor to
load some sample data and run some queries. Select the Query data option
from your dashboard, as shown in Figure 1.13, and you will be navigated to
the query editor, as shown in Figure 1.14.

Figure 1.14 – Query editor

In the Redshift query editor v2 console, on the left pane, you will see the
data warehouses, such as the Serverless:default workgroup, that you have
access to. Click on the workgroup (Serverless:default) to connect to the
data warehouse.

Figure 1.15 – Creating a connection to your workgroup

As shown in the preceding screenshot, select Federated user if you did not
specify any database credentials while creating the namespace, and then
click Create connection. You can leave the database name as dev. You will
be prompted to create a connection only when connecting to the data

warehouse for the first time. If you have created the connection, you will be
connected automatically when you click on the workgroup. Once you are
connected, you will see the databases in the navigator, as shown in Figure
1.16:

Figure 1.16 – List of databases

Since we just created our data warehouse for the first time, there is no data
present in it, so let’s load some sample data into the data warehouse now.

Loading sample data

On the left pane, click on the sample_data_dev database to expand the
available database:

Figure 1.17 – The Redshift query editor v2 navigator that shows the sample data
available

As you can see from the preceding screenshot, three sample datasets are
available for you to load into your data warehouse. Click on the icon

showing the folder with an arrow located to the right of your chosen sample
data notebook to load and open it, as shown in Figure 1.18:

Figure 1.18 – List of sample databases

You will be prompted to create your sample database. Click on Create to
get started, as shown in Figure 1.19:

Figure 1.19 – Creating a sample database

The sample data will be loaded in a few seconds and presented in a
notebook with SQL queries for the dataset that you can explore, as shown
in Figure 1.20:

Figure 1.20 – Notebook with sample queries for the tickit database

You can expand the navigation tree on the left side of the query editor to
view schemas and database objects, such as tables and views in your
schema, as shown in Figure 1.21.

Figure 1.21 – Expanding the navigation tree to view schemas and database objects

You can click on a table to view the table definitions, as shown in Figure
1.22:

Figure 1.22 – Table definitions

Right-clicking on a table provides additional Select table, Show table
definition, and Delete options, as shown in Figure 1.23:

Figure 1.23 – Right-clicking on a table to view more options

You can click Run all, as shown in Figure 1.24, to run all the queries in the
sample notebook. The query editor provides a notebook interface to add
annotation, and SQL cells organize your queries in a single document. You
can use annotations for documentation purposes.

Figure 1.24 – The “Run all” option

You will see the results of your queries for each cell. You can download the
results as JSON or CSV files to your desktop, as shown in Figure 1.25:

Figure 1.25 – Options to download query results

Let’s author our first query.

Running your first query

We want to find out the top 10 events by sales in the tickit database. We
will run the following SQL statement in the data warehouse:

SELECT eventname, total_price

FROM (SELECT eventid, total_price, ntile(1000) over(order by

total_price desc) as percentile

 FROM (SELECT eventid, sum(pricepaid) total_price

 FROM tickit.sales

 GROUP BY eventid)) Q, tickit.event E

 WHERE Q.eventid = E.eventid

 AND percentile = 1

ORDER BY total_price desc

limit 10;

In the query editor, add a new query by clicking on the + sign and selecting
Editor from the menu that appears. If you wanted to create a new notebook,
you could click on Notebook instead, as shown in Figure 1.26:

Figure 1.26 – Creating a new query

Now, type the preceding SQL query in the editor and then click on Run.
You will get the results as shown in the following screenshot:

Figure 1.27 – Query with results

As the saying goes, “A picture is worth a thousand words,” and query
editor allows you to visualize the results to gain faster insight. You can
create a chart easily by clicking on the Chart option and then selecting the
chart you want. Let’s select a scatter plot, as shown in Figure 1.28:

Figure 1.28 – Using charts in Redshift query editor v2

You can add a chart name and notations for the X and Y axes and export the
chart as PNG or JPG to put in your presentation or to share with your
business partners:

Figure 1.29 – Charting options in query editor v2

As you have now seen, you can use Redshift query editor v2 to create your
own database, create tables, load data, and run and author queries and
notebooks. You can share your queries and notebooks with your team
members.

Summary
In this chapter, you learned about cloud data warehouses and Amazon
Redshift Serverless. You created your first data warehouse powered by
Redshift Serverless and loaded some sample data using the query editor.

You also learned how to use the query editor to run queries and visualize
data to produce insights.

In Chapter 2, you will learn the best techniques for loading data and
performing analytics in your Amazon Redshift Serverless data warehouse.

2

Data Loading and Analytics on Redshift
Serverless
In the previous chapter, we introduced you to Amazon Redshift Serverless
and demonstrated how to create a serverless endpoint from the Amazon
Redshift console. We also explained how to connect and query your data
warehouse using Amazon Redshift query editor v In this chapter, we will
dive deeper into the different ways you can load data into your Amazon
Redshift Serverless data warehouse.

We will cover three main topics in this chapter to help you load your data
efficiently into Redshift Serverless. First, we will demonstrate how to load
data using Amazon Redshift query editor v where you will learn how to
load data from your Amazon S3 bucket and local data file onto your
computer using the GUI.

Next, we will explore the COPY command in detail, and you will learn how
to load a file by writing a COPY command to load the data. We will cover
everything you need to know to use this command effectively and load your
data smoothly into Redshift Serverless.

Finally, we will cover the built-in native API interface to access and load
data into your Redshift Serverless endpoint using Jupyter Notebook. We
will guide you through the process of setting up and using the Redshift
Data API.

The topics are as follows:

Data loading using Amazon Redshift query editor v

Data loading from Amazon S3 using the COPY command

Data loading using the Redshift Data API

The goal of this chapter is to equip you with the knowledge and skills to
load data into Amazon Redshift Serverless using different mechanisms. By
the end of this chapter, you will be able to load data quickly and efficiently
into Redshift Serverless using the methods covered in this chapter, which
will enable you to perform analytics on your data and extract valuable
insights.

Technical requirements
This chapter requires a web browser and access to the following:

An AWS account

Amazon Redshift

Amazon Redshift Query Editor v2

Amazon SageMaker for Jupyter Notebook

The code snippets in this chapter are available in this book’s GitHub
repository at https://github.com/PacktPublishing/Serverless-Machine-
Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter2.

The data files used in this chapter can be found in this book’s GitHub
repository: https://github.com/PacktPublishing/Serverless-Machine-

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter2
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2.

Data loading using Amazon Redshift
Query Editor v2
Query Editor v2 supports different database actions, including data
definition language (DDL), to create schema and tables and load data from
data files with just a click of a button. Let’s take a look at how you can
carry out these tasks to enable easy analytics on your data warehouse. Log
in to your AWS console, navigate to your Amazon Redshift Serverless
endpoint, and select Query data. This will open Redshift query editor v2
in a new tab. Using the steps we followed in Chapter 1, log in to your
database and perform the tasks outlined in the following subsections.

Creating tables

Query editor v2 provides a wizard to execute the DDL commands shown in
Figure 2.1. Let’s create a new schema named chapter2 first:

1. Click on Create and select Schema, as shown here.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

Figure 2.1 – The creation wizard

Ensure that your Cluster or workgroup and Database parameters are
correctly populated. If not, then select the correct values from the
dropdowns. Give a suitable name for your schema; we will name it
chapter2.

2. Then, click on Create schema, as shown in Figure 2.2:

Figure 2.2 – Create schema

Once you have your schema created, navigate to the Create drop-down
button and click on Table. This will open up the Create table wizard.
Select the appropriate values for your workgroup and database, and enter
chapter2 in the Schema field. Give your table the name customer. With
Query Editor v2, you can either enter the column names and their data type
manually, or you can use the data file to automatically infer the column
names and their data type.

Let’s create a table with a data file. We will use customer.csv, which is
available in this book’s GitHub repository at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/tree/main/DataFiles/chapter2. You can download this file
locally to create the table using the wizard.

The file contains a subset of the data from the TPC-H dataset, available in
this book's GitHub repository: https://github.com/awslabs/amazon-redshift-
utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-
Derived-from-TPCH.

On the Create table wizard, click on Load from CSV under the Columns
tab, and provide a path to the CSV file. Once the file is selected, the schema
will be inferred and automatically populated from the file, as shown in
Figure 2.3. Optionally, you can modify the schema in the Column name,
Data type, and Encoding fields, and under Column options, you can
select different options such as the following:

Choose a default value for the column.

Optionally, you can turn on Automatically increment if you want the
column values to increment. If you enable this option, only then can you
specify a value for Auto increment seed and Auto increment step.

Enter a size value for the column.

You also have the option to define constraints such as Not NULL,
Primary key, and Unique key.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

Figure 2.3 – Create table

Additionally, as shown in Figure 2.4, under the Table details tab, you can
optionally set the table properties, such as Distribution key, Distribution
style, Sort key, and Sort type. When these options are not set, Redshift
will pick default settings for you, which are Auto Distribution Key and
Auto Sort Key.

Figure 2.4 – Table details

Amazon Redshift distributes data in a table according to the table’s
distribution style (DISTSTYLE). The data rows are distributed within each
compute node according to the number of slices. When you run a query
against the table, all the slices of the compute node process the rows that are
assigned in parallel. As a best practice
(https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-best-dist-
key.xhtml), select a table’s DISTSTYLE parameter to ensure even distribution
of the data or use automatic distribution.

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-best-dist-key.xhtml

Amazon Redshift orders data within each slice using the table’s sort key.
Amazon Redshift also enables you to define a table with compound sort
keys, interleaved sort keys, or no sort keys. As a best practice
(https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-sort-
key.xhtml), define the sort keys and style according to your data access
pattern. Having a proper sort key defined on a table can hugely improve
your query performance.

Lastly, under Other options you can select the following:

Whether to include your table in automated and manual snapshots

Whether to create a session-based temporary table instead of a
permanent database table

Once you have entered all the details, you can view the DDL of your table
by clicking Open query in editor. You can use this later or even share it
with other users.

Now, let’s create our table by clicking on the Create table button (Figure
2.4).

As you can see, it is easy for any data scientist, analyst, or user to use this
wizard to create database objects (such as tables) without having to write
DDL and enter each column's data type and its length.

Let’s now work on loading data in the customer table. Query Editor v2
enables you to load data from Amazon S3 or the local file on your
computer. Please note that, at the time of writing, the option to load a local
file currently supports only CSV files with a maximum size of 5 MB.

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-sort-key.xhtml

Loading data from Amazon S3

Query editor v2 enables you to load data from Amazon S3 buckets into an
existing Redshift table.

The Load data wizard populates data from Amazon S3 by generating the
COPY command, which really makes it easier for a data analyst or data
scientist, as they don’t have to remember the intricacies of the COPY
command. You can load data from various file formats supported by the
COPY command, such as CSV, JSON, Parquet, Avro, and Orc. Refer to this
link for all the supported data formats:
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-
format.xhtml#copy-format.

Let’s look at loading data using the Load data wizard. We will load the
data into our customer table from our data file (customer.csv), which is
stored in the following Amazon S3 location: s3://packt-serverless-ml-
redshift/chapter02/customer.csv.

Note that if you want to use your own Amazon S3 bucket to load the data,
then download the data file from the GitHub location mentioned in the
Technical requirements section.

To download a data file from GitHub, navigate to your repository, select the
file, right-click the View raw button at the top of the file, select Save Link
As… (as shown in the following screenshot), choose the location on your
computer where you want to save the file, and select Save:

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.xhtml#copy-format

Figure 2.5 – Saving the data file

On Query Editor v2, click on Load data, which opens up the data load
wizard.

Under Data source, select the Load from S3 radio button. You can browse
the S3 bucket in your account to select the data file or a folder that you
want to load, or you can select a manifest file. For this exercise, paste the
aforementioned S3 file location.

If the data file is in a different region than your Amazon Redshift
Serverless, you can select the source region from the S3 file location
dropdown. The wizard provides different options if you want to load a
Parquet file. Then, select an option from File format, or under File options,
you can select Delimiter if your data is delimited by a different character. If
your file is compressed, then you can select the appropriate compression
from the dropdown, such as gzip, lzop, zstd, or bzip2.

Under Advanced settings, note that there are two options, Data
conversion parameters and Load operations:

Under the Data conversion parameters option, you can handle explicit
data conversion settings – for example, a time format (TIMEFORMAT) as
‘MM.DD.YYYY HH:MI:SS'. Refer to this documentation link for a full list
of parameters: https://docs.aws.amazon.com/redshift/latest/dg/copy-
parameters-data-conversion.xhtml#copy-timeformat.

Under Load operations, you can manage the behavior of the load
operation – for example, the number of rows for compression analysis
(COMPROWS) as 1,000,000. Refer to this documentation for a full list of
options: https://docs.aws.amazon.com/redshift/latest/dg/copy-
parameters-data-load.xhtml.

As our file contains the header row, please ensure that under Advanced
settings | Data conversion parameters | Frequently used parameters, the
Ignore header rows (as 1) option is checked.

As shown in Figure 2.6, select the Target table parameters and IAM role
to load the data:

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-conversion.xhtml#copy-timeformat
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-load.xhtml

Figure 2.6 – Load data

Once you click on Load data, Query Editor v2 will generate the COPY
command in the editor and start loading by running the COPY statement.

Now that we have loaded our data, let’s quickly verify the load and check
the data by querying the table, as shown here:

Figure 2.7 – Querying the data

Query Editor v2 enables you to save your queries in the editor for later use.
You can do so by clicking on the Save button and providing a name for the
saved query. For example, if you want to reuse the preceding load data
query (the COPY command) in the future and, let’s say, the target table is the
same but the data location on Amazon S3 is different, then you can easily
modify this query and load the data quickly. Alternatively, you can even
parameterize the query to pass, for example, an S3 location as
${s3_location}, as shown in Figure 2.8:

Figure 2.8 – Saving the query

SHARING QUERIES
With Query Editor v2, you can share your saved queries with your team. This way, many
users can collaborate and share the same query. Internally, Query Editor manages the
query versions, so you can track the changes as well. To learn more about this, refer to this
AWS documentation: https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-
team.xhtml#query-editor-v2-query-share.

Now that we have covered how Query Editor v2 enables users to easily
create database objects and load data using the UI interface with a click of a
few buttons, let us dive into Amazon Redshift’s COPY command to load the
data into your data warehouse.

Loading data from a local drive

Query Editor v2 enables users to load data from a local file on their
computer and perform analysis on it quickly. Often, database users such as

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-team.xhtml#query-editor-v2-query-share

data analysts or data scientists have data files on their local computer that
they want to load quickly into a Redshift table, without moving the file into
a remote location such as Amazon S3.

In order to load the data from a local file, Query Editor v2 requires a
staging Amazon S3 bucket in your account. If it is not configured, then you
will see an error similar to the one seen in the following screenshot:

Figure 2.9 – An error message

To avoid the preceding error, users must do the following configuration:

1. The account users must be configured with the proper permissions, as
follows. Attach the following policy to your Redshift Serverless IAM
role. Replace the resource names as highlighted:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket",

 "s3:GetBucketLocation"

],

 "Resource": [

 "arn:aws:s3:::<staging-bucket-name>"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject",

 "s3:DeleteObject"

],

 "Resource": [

 "arn:aws:s3:::<staging-bucket-name>

[/<optional-prefix>]/${aws:userid}/*"

]

 }

]

}

2. Your administrator must configure the common Amazon S3 bucket in
the Account settings window, as shown here:

1. Click on the settings icon () and select Account settings,
as shown in the following screenshot:

Figure 2.10 – Account settings

2. In the Account settings window, under General settings | S3 bucket |
S3 URI, enter the URI of the S3 bucket that will be used for staging
during the local file load, and then click on Save. Ensure that your IAM
role has permission to read and write on the S3 bucket:

Figure 2.11 – Enter the URI of the S3 bucket under General settings

Refer to this documentation for complete information:

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-
loading.xhtml#query-editor-v2-loading-data-local

Creating a table and loading data from a local
CSV file

Let’s create a new table. Navigate to Query Editor v2 and create a supplier
table using the following DDL command:

CREATE TABLE chapter2.supplier (

 s_suppkey integer NOT NULL ENCODE raw distkey,

 s_name character(25) NOT NULL ENCODE lzo,

 s_address character varying(40) NOT NULL ENCODE lzo,

 s_nationkey integer NOT NULL ENCODE az64,

 s_phone character(15) NOT NULL ENCODE lzo,

 s_acctbal numeric(12, 2) NOT NULL ENCODE az64,

 s_comment character varying(101) NOT NULL ENCODE lzo,

 PRIMARY KEY (s_suppkey)

) DISTSTYLE KEY

SORTKEY (s_suppkey);

We will load the data into our supplier table from our data file
(supplier.csv), which is stored in the following GitHub location:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/DataFiles/chapter2/supplier.csv.

To download the file on your local computer, right-click on Raw and click
on Save Link as.

In order to load data into the supplier table from Query Editor v2, click on
Load data, which opens up the data load wizard. Under Data source,
select the Load from local file radio button. Click on Browse and select the
supplier.csv file from your local drive. Under the Target table options, set

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.xhtml#query-editor-v2-loading-data-local
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/DataFiles/chapter2/supplier.csv

Schema as chapter2 and Table as supplier. Click on Load data to start
the load:

Figure 2.12 – The Load data wizard

Once the data is loaded successfully, you would see a message like the
following:

Figure 2.13 – The message after successfully loading the data

Verify the data load by running the following SQL query:

select * from chapter2.supplier;

You should be able to see 100 rows loaded from the file:

Figure 2.14 – Data load verification

We have now successfully loaded our data from the Query Editor v2 Load
data wizard, using files from an Amazon S3 bucket and your local
computer. Let’s look into Amazon Redshift’s COPY command in the next
section.

Data loading from Amazon S3 using the
COPY command
Data warehouses are typically designed to ingest and store huge volumes of
data, and one of the key aspects of any analytical process is to ingest such
huge volumes in the most efficient way. Loading such huge data can take a
long time as well as consume a lot of compute resources. As pointed out
earlier, there are several ways to load data in your Redshift Serverless data
warehouse, and one of the fastest and most scalable methods is the COPY
command.

The COPY command loads your data in parallel from files, taking advantage
of Redshift’s massively parallel processing (MPP) architecture. It can load
data from Amazon S3, Amazon EMR, Amazon DynamoDB, or text files on
remote hosts (SSH). It is the most efficient way to load a table in your
Redshift data warehouse. With proper IAM policies, you can securely
control who can access and load data in your database.

In the earlier section, we saw how Query Editor v2 generates the COPY
command to load data from the wizard. In this section, we will dive deep
and talk about how you can write the COPY command and load data from
Amazon S3, and what some of the best practices are.

Let’s take a look at the COPY command to load data into your Redshift data
warehouse:

COPY table-name

[column-list]

FROM data_source

authorization

[[FORMAT] [AS] data_format]

[parameter [argument] [, ...]]

The COPY command requires three parameters:

table-name: The target table name existing in the database (persistent or
temporary)

data_source: The data source location (such as the S3 bucket)

authorization: The authentication method (for example, the IAM role)

By default, the COPY command source data format is expected to be in
character-delimited UTF-8 text files, with a pipe character (|) as the default
delimiter. If your source data is in another format, you can pass it as a
parameter to specify the data format. Amazon Redshift supports different
data formats, such as fixed-width text files, character-delimited files, CSV,
JSON, Parquet, and Avro.

Additionally, the COPY command provides optional parameters to handle
data conversion such as the data format, null, and encoding. To get the
latest details, refer to this AWS documentation:
https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.xhtml#r_COPY-
syntax.

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.xhtml#r_COPY-syntax

Loading data from a Parquet fi le

In the earlier section, we worked on loading a CSV file into the customer
table in our database. For this exercise, let’s try to load a columnar data
format file such as Parquet. We will be using a subset of TPC-H data, which
may be found here: https://github.com/awslabs/amazon-redshift-
utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-
Derived-from-TPCH/3TB.

The TPC is an organization focused on developing data benchmark
standards. You may read more about TPC here:
https://www.tpc.org/default5.asp.

The modified data (lineitem.parquet) is available on GitHub:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/tree/main/DataFiles/chapter2.

The data needed for the COPY command is available here: s3://packt-
serverless-ml-redshift/chapter02/lineitem.parquet.

This file contains approximately 6 million rows and is around 200 MB in
size:

1. Let’s first start by creating a table named lineitem in the chapter2
schema:

-- Create lineitem table

CREATE TABLE chapter2.lineitem

(l_orderkey bigint,

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH/3TB
https://www.tpc.org/default5.asp
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

l_partkey bigint,

l_suppkey integer,

l_linenumber integer,

l_quantity numeric(12,2),

l_extendedprice numeric(12,2),

l_discount numeric(12,2),

l_tax numeric(12,2),

l_returnflag character(1),

l_linestatus character(1),

l_shipdate date,

l_commitdate date,

l_receiptdate date,

l_shipinstruct character(25),

l_shipmode character(10),

l_comment varchar(44))

distkey(l_orderkey) compound sortkey(l_orderkey,l_shipdate);

2. Now, let’s load the data using the COPY command from the
lineitem.parquet file:

COPY chapter2.lineitem

FROM 's3://packt-serverless-ml-

redshift/chapter02/lineitem.parquet'

IAM_ROLE default

FORMAT AS PARQUET;

Now that we have loaded our data, let’s quickly verify the load and check
the data by querying the table, as shown in the following screenshot:

Figure 2.15 – The query table

In this section, we discussed how the COPY command helps load your data in
different formats, such as CSV, Parquet, and JSON, from Amazon S3

buckets. Let’s see how you can automate the COPY command to load the data
as soon as it is available in an Amazon S3 bucket. The next section on
automating a COPY job is currently in public preview at the time of writing.

Automating fi le ingestion with a COPY
job

In your data warehouse, data is continuously ingested from Amazon S3.
Previously, you wrote custom code externally or locally to achieve this
continuous ingestion of data with scheduling tools. With Amazon Redshift’s
auto-copy feature, users can easily automate data ingestion from Amazon
S3 to Amazon Redshift. To achieve this, you will write a simple SQL
command to create a COPY job
(https://docs.aws.amazon.com/redshift/latest/dg/r_COPY-JOB.xhtml), and
the COPY command will trigger automatically as and when it detects new
files in the source Amazon S3 path. This will ensure that users have the
latest data for processing available shortly after it lands in the S3 path,
without having to build an external custom framework.

To get started, you can set up a COPY job, as shown here, or modify the
existing COPY command by adding the JOB CREATE parameter:

COPY <table-name>

FROM 's3://<s3-object-path>'

[COPY PARAMETERS...]

JOB CREATE <job-name> [AUTO ON | OFF];

Let’s break this down:

job-name is the name of the job

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY-JOB.xhtml

AUTO ON | OFF indicates whether the data from Amazon S3 has loaded
automatically into an Amazon Redshift table

As you can see, the COPY job is an extension of the COPY command, and
auto-ingestion of COPY jobs is enabled by default.

If you want to run a COPY job, you can do so by running the following
command:

COPY JOB RUN job-name

For the latest details, refer to this AWS documentation:
https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-
job.xhtml.

Best practices for the COPY command

The following best practices will help you get the most out of the COPY
command:

Make the most of parallel processing by splitting data into multiple
compressed files or by defining distribution keys on your target tables,
as we did in our example.

Use a single COPY command to load data from multiple files. If you use
multiple concurrent COPY commands to load the same target table from
multiple files, then the load is done serially, which is much slower than
a single COPY command.

If your data file contains an uneven or mismatched number of fields,
then provide the list of columns as comma-separated values.

https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-job.xhtml

When you want to load a single target table from multiple data files and
your data files have a similar structure but different naming
conventions, or are in different folders in an Amazon S3 bucket, then
use a manifest file. You can supply the full path of the files to be loaded
in a JSON-formatted text file. The following is the syntax to use a
manifest file:

copy <table_name> from 's3://<bucket_name>/<manifest_file>'

authorization

manifest;

For a COPY job, use unique filenames for each file that you want to load.
If a file is already processed and any changes are done after that, then
the COPY job will not process the file, so remember to rename the
updated file.

So far, we have seen two approaches to data loading in your Amazon
Redshift data warehouse – using the Query Editor v2 wizard and writing an
individual COPY command to trigger ad hoc data loading. Let us now look
into how you can use an AWS SDK to load data using the Redshift Data
API.

Data loading using the Redshift Data API
The Amazon Redshift Data API is a built-in native API interface to access
your Amazon Redshift database without configuring any Java Database
Connectivity (JDBC) or Open Database Connectivity (ODBC) drivers.
You can ingest or query data with a simple API endpoint without managing

a persistent connection. The Data API provides a secure way to access your
database by using either IAM temporary credentials or AWS Secrets
Manager. It provides a secure HTTP endpoint to run SQL statements
asynchronously, meaning you can retrieve your results later. By default,
your query results are stored for 24 hours. The Redshift Data API integrates
seamlessly with different AWS SDKs, such as Python, Go, Java, Node.js,
PHP, Ruby, and C++. You can also integrate the API with AWS Glue for an
ETL data pipeline or use it with AWS Lambda to invoke different SQL
statements.

There are many use cases where you can utilize the Redshift Data API, such
as ETL orchestration with AWS Step Functions, web service-based
applications, event-driven applications, and accessing your Amazon
Redshift database using Jupyter notebooks. If you want to just run an
individual SQL statement, then you can use the AWS Command-Line
Interface (AWS CLI) or any programming language. The following is an
example of executing a single SQL statement in Amazon Redshift
Serverless from the AWS CLI:

aws redshift-data execute-statement

--WorkgroupName redshift-workgroup-name

--database dev

--sql 'select * from redshift_table';

Note that, for Redshift Serverless, you only need to provide the workgroup
name and database name. Temporary user credentials are pulled from IAM
authorization. For Redshift Serverless, add the following permission in the
IAM policy attached to your cluster IAM role to access the Redshift Data
API:

redshift-serverless:GetCredentials

In order to showcase how you can ingest data using the Redshift Data API,
we will carry out the following steps using Jupyter Notebook. Let’s create a
notebook instance in our AWS account.

On the console home page, search for Amazon SageMaker. Click on the
hamburger icon () in the top-left corner, then Notebook, and then
Notebook instances. Click on Create notebook instance and provide the
necessary input. Once the notebook instance is in service, click on Open
Jupyter.

The following screenshot shows a created notebook instance:

Figure 2.16 – Creating a notebook instance

The Jupyter notebook for this exercise is available at this GitHub location:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/Chapter2.ipynb. Download this notebook to
your local machine and save it in a folder.

The data (orders.parquet) for this exercise is available on GitHub at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/tree/main/DataFiles/chapter2, as well as this Amazon S3
location: s3://packt-serverless-ml-redshift/chapter2/orders.parquet.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/Chapter2.ipynb
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

We will use a subset of the orders data, which is referenced from the TPC-H
dataset available here: https://github.com/awslabs/amazon-redshift-
utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-
Derived-from-TPCH.

Let’s first open the downloaded notebook (Chapter2.ipynb) by following
these steps:

1. On the Jupyter Notebook landing page, click on Upload and open the
previously downloaded notebook.

2. Select the kernel (conda_python3) once the notebook is uploaded.

NOTE
Redshift Serverless requires your boto3 version to be greater than version 1.24.32.

3. Let’s check our boto3 library version, as shown in Figure 2.17.

Figure 2.17 – Checking the boto3 version

If you want to install a specific version greater than 1.24.32, then check the
following example:

pip install boto3==1.26.35

Creating table

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

As you can see in the chapter2.ipynb notebook, we have provided step-by-
step instructions to connect to your Redshift Serverless endpoint and
perform the necessary operations:

1. Let’s start by setting up the parameters and importing the necessary
libraries for this exercise. We will set the following two parameters:

REDSHIFT_WORKGROUP: The name of the Redshift Serverless
workgroup

S3_DATA_FILE: The source data file for the load:

import boto3

import time

import pandas as pd

import numpy as np

session = boto3.session.Session()

region = session.region_name

REDSHIFT_WORKGROUP = '<workgroup name>'

S3_DATA_FILE='s3://packt-serverless-ml-

redshift/chapter2/orders.parquet'

NOTE
Remember to set the parameters as per your settings in the Jupyter notebook.

2. In order to create the table, let’s first prepare our DDL and assign it to a
table_ddl variable:

table_ddl = """

DROP TABLE IF EXISTS chapter2.orders CASCADE;

CREATE TABLE chapter2.orders

(o_orderkey bigint NOT NULL,

o_custkey bigint NOT NULL encode az64,

o_orderstatus character(1) NOT NULL encode lzo,

o_totalprice numeric(12,2) NOT NULL encode az64,

o_orderdate date NOT NULL,

o_orderpriority character(15) NOT NULL encode lzo,

o_clerk character(15) NOT NULL encode lzo,

o_shippriority integer NOT NULL encode az64,

o_comment character varying(79) NOT NULL encode lzo

)

distkey(o_orderkey) compound

sortkey(o_orderkey,o_orderdate);"""

3. Using the boto3 library, we will connect to the Redshift Serverless
workgroup:

client = boto3.client("redshift-data")

There are different methods that are available to execute different
operations on your Redshift Serverless endpoint. Check out the entire list in
this documentation:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/service
s/redshift-data.xhtml.

4. We will use the execute_statement method to run an SQL statement,
which can be in the data manipulation language (DML) or DDL. This
method runs a single SQL statement. To run multiple statements, you
can use BatchExecuteStatement. To get a complete list of different
methods and how to use them, please refer to this AWS documentation:
https://docs.aws.amazon.com/redshift-
data/latest/APIReference/Welcome.xhtml:

client = boto3.client("redshift-data")

res = client.execute_statement(Database='dev',

Sql=table_ddl, WorkgroupName

=REDSHIFT_WORKGROUP)

As you can see from the preceding code block, we will first set the client as
redshift-data and then call execute_statement to connect the Serverless
endpoint, using the Database name and WorkgroupName. The method uses
temporary credentials to connect to your Serverless workgroup.

We will also pass table_ddl as a parameter to create the table. We will
create the Orders table in our chapter2 schema.

5. The Redshift Data API sends back a response element once the action is
successful, in a JSON format as a dictionary object. One of the response
elements is a SQL statement identifier. This value is universally unique

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/redshift-data.xhtml
https://docs.aws.amazon.com/redshift-data/latest/APIReference/Welcome.xhtml

and generated by the Amazon Redshift Data API. As you can see in the
following code, we have captured the response element, Id, from the
output object, res:

query_id = res["Id"]

print(query_id)

6. In order to make sure that your query is completed, you can use the
describe_statement method and pass your id statement as a parameter.
This method sends out the response, which contains information that
includes when the query started, when it finished, the query status, the
number of rows returned, and the SQL statement.

Figure 2.18 – Checking the query status

As you can see in Figure 2.18, we have captured the status of the statement
that we ran, and it sends out the status as FINISHED. This means that we have
created our table in the database, and you can verify this by writing a simple
SELECT statement against the table.

Loading data using the Redshift Data API

Now, let’s move forward to load data into this newly created table. You can
use the S3 location for the source data, as mentioned previously. If you use

a different S3 location, then remember to replace the path in the parameter
(S3_DATA_FILE):

1. Let’s write a COPY command, as shown in the following code block. We
will create the COPY command in the load_data variable, using the S3
path as a parameter:

load_data = f"""COPY chapter2.orders

FROM '{S3_DATA_FILE}'

IAM_ROLE default

FORMAT AS PARQUET;"""

2. Next, we will use the execute_statement method to run this COPY
command and capture the id statement:

res = client.execute_statement(Database='dev', Sql=load_data,

 WorkgroupName=REDSHIFT

WORKGROUP)

query_id = res["Id"]

print(query_id)

Be sure to check whether the status of the query is FINISHED.

3. Once the statement status is defined as FINISHED, we will verify our data
load by running a count query, as shown here:

cnt = client.execute_statement(Database='dev', Sql='Select

count(1) from chapter2.orders ;',

WorkgroupName=REDSHIFT_WORKGROUP)

query_id = cnt["Id"]

We will now print the results:

Figure 2.19 – Count query results

As you can see in Figure 2.19, we have successfully loaded 1.5 million
rows.

In the notebook, we have provided a combined code block to show how you
can convert all these steps into a function, calling it as and when you
require it to load data into a new table.

We also have a GitHub repository (https://github.com/aws-samples/getting-
started-with-amazon-redshift-data-api/), which showcases how to get
started with the Amazon Redshift Data API in different languages, such as
Go, Java, JavaScript, Python, and TypeScript. You can go through the step-
by-step process explained in the repository to build your custom application
in all these languages, using the Redshift Data API.

Summary
In this chapter, we showcased how you can load data into your Amazon
Redshift Serverless database using three different tools and methods, by
using the query editor v GUI interface, the Redshift COPY command to load

https://github.com/aws-samples/getting-started-with-amazon-redshift-data-api/

the data, and the Redshift Data API using Python in a Jupyter notebook. All
three methods are efficient and easy to use for your different use cases.

We also talked about some of the best practices for the COPY command to
make efficient use of it.

In the next chapter, we will start with our first topic concerning Amazon
Redshift machine learning, and you will see how you can leverage it in your
Amazon Redshift Serverless data warehouse.

3

Applying Machine Learning in Your Data
Warehouse
Machine Learning (ML) is a routine and necessary part of organizations in
today’s modern business world. The origins of ML date back to the 1940s
when logician Walter Pitts and neuroscientist Warren McCulloch tried to
create a neural network that could map out human thought processes.

Organizations can use their data along with ML algorithms to build a
mathematical model to make faster, better-informed decisions, and the
value of data to organizations today cannot be understated. Data volumes
will continue to grow rapidly and organizations that can most effectively
manage their data for predictive analytics and identify trends will have a
competitive advantage, lower costs, and increased revenue. But to truly
unlock this capability, you must bring ML closer to the data, provide self-
service tools that do not require a deep data science background and
eliminate unnecessary data movement in order to speed up the time it takes
to operationalize ML models into your pipelines.

This chapter will introduce you to ML and discuss common use cases to
apply ML in your data warehouse. You will begin to see the art of the
possible and imagine how you can achieve business outcomes faster and
more easily through the use of Amazon Redshift ML. We will guide you
through the following topics:

Understanding the basics of ML algorithms

Traditional steps to implement ML

Overcoming the challenges of implementing ML

Exploring the benefits of ML

Understanding the basics of ML
In this section, we will go into more detail about machine learning so that
you have a general understanding of the following areas:

Supervised versus unsupervised learning

Classification problems

Regression problems

Let’s start by looking at supervised and unsupervised learning.

Comparing supervised and unsupervised
learning

A supervised learning algorithm is supervised by data that contains the
known outcome you want to predict. The ML model learns from this known
outcome in the data and then uses that learning to predict the outcome of
new data.

This known outcome in the data is also referred to as the label or target. For
example, if you have a dataset containing home sales information, the sales
price would typically be the target.

Supervised learning can be further broken down into classification or
regression problems.

With unsupervised learning the ML model must learn from the data
outcome by grouping data based on similarities, differences, and other
patterns without any guidance or known outcome.

You can use unsupervised algorithms to find patterns in the data. For
example, you can use unsupervised learning to perform customer
segmentation to be more effective in targeting groups of customers. Other
use cases include the following:

Detecting abnormal sensor readings

Document tagging

With the rich data that data warehouses contain, you can easily get started
training models using both supervised and unsupervised learning.

Let’s dig into more details on classification and regression problem types.

Classification

Classification problems are tasks to predict class labels, which can be either
binary classification or multi-class classification:

Binary classification – The outcome can be in one of two possible
classes, for example, to predict whether a customer will churn, whether
an email is spam, or whether a patient is likely to be hospitalized after
being infected by COVID-19.

Multi-class classification – The outcome can be in one of three or more
possible classes – for example, predict a plant species or which category
a news article belongs to. Other mutli-class classification use cases
include the following:

Sales forecasting

Intelligent call routing

Advertisement optimization

Regression

Regression problems are used when you have a target of continuous values
and want to predict a value based on the input variables.

Regression problems are tasks predicting a continuous numeric value:

Linear regression: With linear regression, we predict a numerical
outcome such as how much a customer will spend or the predicted
revenue for an upcoming concert or sporting event. See Chapter 7,
Building Regression Models, for more details.

Logistic regression: Logistic regression is another option to solve a
binary classification problem. We will show some examples of this
technique in Chapter 6, Building Classification Models.

Regression use case examples include the following:

Price and revenue prediction

Customer lifetime value prediction

Detecting whether a customer is going to default on a loan

Now we will cover the steps to implement ML.

Traditional steps to implement ML
In this section, you will get a better understanding of the critical steps
needed to produce an optimal ML model:

Data preparation

Machine learning model evaluation

Data preparation

A typical step in ML is to convert the raw data for input to train your model
so that data scientists and data analysts can apply machine learning
algorithms to the data. You may also hear the terms data wrangling or
feature engineering.

This step is necessary since machine learning algorithms require inputs to
be numbered. For example, you may need outliers or anomalies removed
from your data. Also, you may need to fill in missing data values such as
missing records for holidays. This helps to increase the accuracy of your
model.

Additionally, it is important to ensure your training datasets are unbiased.
Machine learning models learn from data and it is important that your
training dataset has sufficient representation of demographic groups.

Here are some examples of data preparation steps:

Determining the inputs needed for your model – This is the process
of identifying the attributes that most influence the ML model outcome.

Cleaning the data – Correcting data quality errors, eliminating
duplicate rows and anomalous data. You need to investigate the data and
look for unusual values – this requires knowledge of the domain and
how business logic is applied.

Transforming the input features – Machine models require inputs to
be numeric. For example, you will use a technique called one-hot
encoding when you have data that is not ordinal – such as country or
gender data. This will convert the categorical value into a binary value,
which creates better classifiers and therefore better models. But as you
will see later, when you use the Auto ML feature of Redshift ML, this
will have been taken care of for you.

Splitting your data into training, validation, and testing datasets:

Training dataset – This is a subset of your data that is used to
train your model. As a rule of thumb, this is about 80% of your
overall dataset.

Validation dataset – Optionally, you may want to create a
validation dataset. This is a ~10% subset of data that is used to
evaluate the model during the process of hyperparameter
tuning. Examples of hyperparameters include the number of
classes (num_class) for multi-class classification and the
number of rounds (num_rounds) in an XGBoost model. Note
that Amazon Redshift ML automatically tunes your model.

Testing dataset – This is the remaining 10% of your data used
to evaluate the model performance after training and tuning the
model.

Traditionally, data preparation is a very time-consuming step and one of the
reasons machine learning can be complex. As you will see later, Amazon
Redshift ML automates many of the data preparation steps so you can focus
on creating your models.

Evaluating an ML model

After you have created your model, you need to calculate the model’s
accuracy. When using Amazon Redshift ML, you will get a metric to
quantify model accuracy.

Here are some common methods used to determine model accuracy:

Mean squared error (MSE): MSE is the average of the squared
differences between the predicted and actual values. It is used to
measure the effectiveness of regression models. MSE values are always
positive: the better a model is at predicting the actual values, the smaller
the MSE value is. When the data contains outliers, they tend to
dominate the MSE, which might cause subpar prediction performance.

Accuracy: The ratio of the number of correctly classified items to the
total number of (correctly and incorrectly) classified items. It is used for
binary and multi-class classification. It measures how close the
predicted class values are to the actual values. Accuracy values vary

between zero and one: one indicates perfect accuracy and zero indicates
perfect inaccuracy.

F1 score: The F1 score is the harmonic mean of the precision and recall.
It is used for binary classification into classes traditionally referred to as
positive and negative. Predictions are said to be true when they match
their actual (correct) class and false when they do not. Precision is the
ratio of the true positive predictions to all positive predictions
(including the false positives) in a dataset and measures the quality of
the prediction when it predicts the positive class.

F1_Macro – The F1 macro score applies F1 scoring to multi-class
classification. In this context, you have multiple classes to predict. You
just calculate the precision and recall for each class, as you did for the
positive class in binary classification. F1 macro scores vary between
zero and one: one indicates the best possible performance and zero the
worst.

Area under the curve (AUC): The AUC metric is used to compare and
evaluate binary classification by algorithms such as logistic regression
that return probabilities. A threshold is needed to map the probabilities
into classifications. The relevant curve is the receiver operating
characteristic curve that plots the true positive rate (TPR) of
predictions (or recall) against the false positive rate (FPR) as a
function of the threshold value, above which a prediction is considered
positive.

Now let’s take a look at a couple of these evaluation techniques in more
detail.

Regression model evaluation example
A regression model’s accuracy is measured by the Mean Square Error
(MSE) and Root Mean Square Error (RMSE). The MSE is the average
squared difference between the predicted values and the actual values in a
model’s dataset and is also known as ground truth. You can square the
differences between the actual and predicted answers and then get the
average to calculate the MSE. The square root of the MSE computes the
RMSE. Low MSE and RMSE scores indicate a good model.

Here is an example of a simple way to calculate the MSE and RMSE so that
you can compare them to the MSE score your model generated. Let’s
assume we have a regression model predicting the number of hotel
bookings by a customer for the next month.

Calculate the MSE and RMSE as follows:

MSE = (AVG(POWER((actual_bookings - predicted_bookings)

RMSE = (SQRT(AVG(POWER((actual_bookings - predicted_bookings

You will calculate the MSE and RMSE for a regression model in one of the
exercises in Chapter 7.

A classification model can be evaluated based on accuracy. The accuracy
method is fairly straightforward, where it can be measured by taking the
percentage of the total number of predictions compared to the total number
of correct predictions.

Binary classification evaluation example
A confusion matrix is useful for understanding the performance of
classification models and is a recommended way to evaluate a classification
model. We present the following details for your reference if you want to

know more about this topic. We also have a detailed example in Chapter
10.

A confusion matrix is in a tabular format and contains four cells – Actual
Values make up the x axis and Predicted Values make up the y axis, and
the cells denote True Positive, False Positive, False Negative, and True
Negative. This is good to measure precision, recall, and the area under the
curve (AUC). Figure 3.1 shows a simple confusion matrix:

Actual Values

True Positive False Positive

Predicted Values False Negative True Negative

Figure 3.1 – Simple confusion matrix

In Figure 3.2, we have 100 records in our dataset for our binary
classification model where we are trying to predict customer churn:

Actual Values

10 4

Predicted Values 6 80

Figure 3.2 – Confusion matrix

We can interpret the quality of our predictions from the model as follows:

Correctly predicted 10 customers would churn

Correctly predicted 80 customers would not churn

Incorrectly predicted 4 customers would churn

Incorrectly predicted 6 customers would not churn

The F1 score is one of the most important evaluation metrics as it considers
the precision and recall rate of the model. For example, an F1 score of .92
means that the model correctly predicted 92% of the time. This method
makes sure predictions on both classes are good and not biased only toward
one class.

Using our confusion matrix example from Figure 3.2, we can calculate
precision:

Precision = 10 _ 10 + 4

This could also be written as follows:

Precision = True Positives _______________________ (True Positives +
False Positives)

We can also calculate recall in a similar way:

Recall = 10 _ 10 + 6

This could also be written as follows:

Recall = True Positives _______________________ (True Positives +
False Negatives)

The F1 score combines precision and recall – it can be calculated as
follows:

2 × (precision × recall ____________ precision + recall)

We have shown you the common techniques for evaluating ML models. As
we progress through the book, you will see examples of these techniques
that you can apply to your ML evaluation processes.

Now that you have learned the basics of ML, we will discuss some common
challenges of implementing ML and how to overcome those.

Overcoming the challenges of
implementing ML today
Data growth is both an opportunity and a challenge, and organizations are
looking to extract more value from their data. Line-of-business users, data
analysts, and developers are being called upon to use this data to deliver
business outcomes. These users need easy-to-use tools and don’t typically
have the skill set of a typical data scientist nor the luxury of time to learn
these skills plus being experts in data management. Central IT departments
are overwhelmed with analytics and data requirements and are looking for
solutions to enable users with self-service tools delivered on top of
powerful systems that are easy to use. Following are some of the main
challenges:

Data is more diverse and growing rapidly. We have moved from
analyzing terabytes to petabytes and exabytes of data. This data
typically is spread across many different data stores across
organizations. This means data has to be exported and then landed on
another platform to train ML models. Amazon Redshift ML gives you
the ability to train models using the data in place without having to
move it around.

A lack of expertise in data management impacts the ability to
effectively scale to keep up with volumes of data and an increase in
usage.

A lack of agility to react quickly to events and customer escalations due
to data silos and the time required to train a model and make it available
for use in making predictions.

A lack of qualified data scientists to meet today’s demands for machine
learning. Demands are driven by the need to improve customer
experiences, predict future revenues, detect fraud, and provide better
patient care, just to name a few.

Consider the following workflow for creating an ML model:

Figure 3.3 – Typical machine learning workflow

Following are the steps to create an ML model, as shown in Figure 3.3:

1. First, we start off with data preparation. This can be a very time-
consuming process and data may come from many different sources.
This data must be cleansed, wrangled, and split into training and test
datasets. It then needs to be exported and then loaded into the
environment for training.

2. Then you must know which ML algorithm you should use or you need
to train your model on. This requires a data scientist who is skilled in
tools such as R or Python and has experience in knowing which
algorithm is best for a particular problem. As you will see in a later
chapter, Amazon Redshift ML can automatically determine the
algorithm for you.

3. Then you will iterate many times through training, tuning, and
validating the model until you find the best model for your use case.

4. Then, after you deploy the model, you need to continuously monitor the
quality of the model and manage the environment including scaling
hardware and applying patches and upgrades as needed.

In order to reduce the time required to build data pipelines for machine
learning, we must bring machine learning closer to the data and reduce
unnecessary data movement. You can use a data architecture, as we talked
about in Chapter 1, Introduction to Redshift Serverless, with the data
warehouse at the center. This also includes your data lake and other
operational data stores, which, taken together, provide a unified view of all
your data that is organized and easily available in a secure manner.

You can build upon the analytic stack that you have built out and enable
your data analysts to build and train their own models. All data warehouse
users can leverage the power of ML with no data science experience. DW
users can create, train, and deploy ML models with familiar SQL
commands. Then, using SQL, they can use those models to analyze the data
accessible from Amazon Redshift. You can also leverage your existing
models in Amazon SageMaker and run inferences on data stores in Amazon

Redshift. Data scientists can leverage Redshift ML to iterate faster by
baselining models directly through Redshift. BI professionals can now run
inference queries directly through tools such as Amazon QuickSight.

Once you implement ML in your organization, you will begin to reap many
benefits, which we will explore further in the next section.

Exploring the benefits of ML
There are three main areas where businesses can see the benefits of ML:

Increased revenue – With ML, you can leverage your data to quickly
test new ideas in order to improve customer experiences. For example,
using unsupervised learning, you can segment your customers and
discover previously unknown purchase patterns, which can drive new
focused campaigns for specific product or subscription offerings.

Better operational and financial efficiency – ML increases
automation and agility within your business so that you can respond to
changing market conditions faster. One example is forecasting product
demand more accurately. By being able to better manage inventory,
organizations can see huge cost savings.

Increased agility to respond to business risks – With ML, you can
make decisions quicker than ever before. Using ML to detect anomalies,
you can quickly take action when your supply chain, product quality,
and other areas of your business face risks.

Application of ML in a data warehouse

Let’s look at a few use cases at a high level to illustrate some of these
benefits. Subsequent chapters will dive into the details:

Improving customer experience: ML can be used to reduce customer
frustration with long wait times. Chatbots can answer many customer
questions quickly, and in some cases, all of their questions:

Personalization: ML can be used to better understand the
behaviors and purchase history of customers to make more
relevant offerings to customers based on their interests.

Sentiment analysis: ML can be used to understand customer
sentiment from social media platforms. This analysis can then
be used for marketing campaigns and customer retention
efforts.

Predicting equipment maintenance: Consider any company with a
fleet of vehicles or equipment. This could be a package delivery
company or a service provider company that must be maintained
appropriately. Without ML, it is likely that either equipment will be
repaired too soon or too frequently, which leads to higher costs, or
equipment will be repaired too late, which leads to equipment being out
of service.

You can use ML to predict the optimal time when each vehicle or piece of
equipment needs to have maintenance to maximize operational efficiency.

Financial analysis: Banks and investment companies use ML for
automation, risk analysis, portfolio allocation, and much more:

Calculating credit scores – ML can quickly calculate credit
scores and approve loans, which reduces risk.

Fraud detection – ML can quickly scan large datasets to detect
anomalies and flag transactions and automatically decline or
approve a transaction. Depending on the nature of a
transaction, the system can automatically decline a withdrawal
or purchase until a human makes a decision.

Sports industry: Auto racing teams can use a model to predict the best
strategies for success and the most effective pit strategy:

Build stronger team rosters by predicting future performance

Improve player safety by predicting future injuries

Health care industry: Early detection of health conditions by
combining ML with historical patient and treatment history and
predicting the treatments with the highest probability of success.

These are just some of the benefits of ML. The possibilities are endless and
advances are continually being made. As we go through subsequent
chapters, you’ll see some use cases in action that you can try out on your
own and start building up your ML skill set.

Summary
In this chapter, we walked you through how to apply machine learning to a
data warehouse and explained the basics of ML. We also discussed how to

overcome the challenges of implementing ML so that you can reap the
benefits of ML in your organization.

These benefits contribute to increased revenue, better operational
efficiencies, and better responses to changing business conditions. After this
chapter, you now have a foundational understanding of the use cases and
types of models you can deploy in your data warehouse.

In the next chapter, we will introduce you to Amazon Redshift ML and how
you can start achieving business outcomes.

Part 2:Getting Started with Redshift ML
Part 2 begins with an overview of Amazon Redshift ML, then dives into
how to create various machine learning models using Amazon Redshift
ML.

By the end of Part 2, you will have an understanding of how to create a
model by simply running a SQL command, the difference between
supervised and unsupervised learning, and how to solve classification,
regression, and clustering problems.

This part comprises the following chapters:

Chapter 4, Leveraging Amazon Redshift Machine Learning

Chapter 5, Building Your First Machine Learning Model

Chapter 6, Building Classification Models

Chapter 7, Building Regression Models

Chapter 8, Building Unsupervised Models with K-Means Clustering

4

Leveraging Amazon Redshift ML
In the previous chapter, we discussed the overall benefits of machine
learning (ML) and how it fits into your data warehouse.

In this chapter, we will focus specifically on how to leverage Amazon
Redshift ML to solve various use cases. These examples are designed to
give you the foundation you need as you get hands-on training models,
beginning in Chapter 5. We will show the benefits of Redshift ML, such as
eliminating data movement, being able to create models using simple SQL,
and drastically reducing the time it takes to train a new model and make it
available for inference. Additionally, you will learn how Amazon Redshift
ML leverages Amazon SageMaker behind the scenes to automatically
train your models as we guide you through the following main topics:

Why Amazon Redshift ML?

An introduction to Amazon Redshift ML

A CREATE MODEL overview

Why Amazon Redshift ML?
Amazon Redshift ML gives you the ability to create and train ML models
with simple SQL commands, without the need to build specialized skills.
This means your data analysts, data engineers, and BI analysts can now

leverage their SQL skills to do ML, which increases agility, since they no
longer need to wait for an ML expert to train their model.

Additionally, since you use your model in the data warehouse, you no
longer need to export data to be trained or import it back into the warehouse
after your model is used to make predictions.

You do not have to worry about managing the governance of data. Data
never leaves your VPC when you export data for training.

You can control who can create models and who can run inference queries
on those models.

Amazon Redshift ML provides a very cost-effective solution for training
and using models. The cost for Amazon SageMaker resources is based on
the number of cells in your training dataset, which is the product of the
number of rows times the number of columns in the training set.

The costs for running prediction queries using Amazon Redshift Serverless
are based on the compute capacity used by your queries.

To learn more about Amazon Redshift Serverless costs refer here
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.xhtml.

You have the ability to control the costs of model training by limiting how
much data is used to train the model, and by controlling the time for
training. We will show you examples of this later in the A CREATE
MODEL overview section.

When you run a prediction query, all predictions are computed locally in
your Redshift data warehouse. This enables you to achieve very high
throughput and low latency.

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.xhtml

An introduction to Amazon Redshift ML
By leveraging Amazon Redshift ML, your organization can achieve many
benefits. First of all, you eliminate unnecessary data movement, users can
use familiar SQL commands, and integration with Amazon SageMaker is
transparent.

Let’s define some of the terms that you will see throughout the remaining
chapters:

CREATE MODEL: This is a command that will contain the SQL that
will export data to be used to train your model.

Features: These are the attributes in your dataset that will be used as
input to train your model.

Target: This is the attribute in your dataset that you want to predict.
This is also sometimes referred to as a label.

Inference: This is also referred to as prediction. In Amazon Redshift
ML, this is the process of executing a query against a trained model to
get the predicted value generated by your model.

To be able to create and access your ML models in Amazon Redshift to run
prediction queries, you need to grant permissions on the model object, just
like you would on other database objects such as tables, views, or functions.

Let’s assume you have created the following role to allow a set of users to
create models, called analyst_cm_role. A superuser can grant permissions
to this role as follows:

GRANT CREATE MODEL to role analyst_cm_role

Users/groups/roles with the CREATE MODEL privilege can create a model in
any schema in your serverless endpoint or Redshift cluster if the user has
the CREATE permission on the Schema. A Redshift ML model is part of the
schema hierarchy, similar to tables, views, stored procedures, and user-
defined functions. Let’s assume we have a schema called demo_ml. You can
grant CREATE and USAGE privileges on the demo_ml schema to the analyst role
using the following GRANT statement:

GRANT CREATE, USAGE ON SCHEMA demo_ml TO role analyst_cm_role

Now, let’s assume we have another role to allow a set of users access to run
prediction queries called analyst_prediction_role. You can grant access to
run predictions on models using the following:

GRANT EXECUTE ON MODEL demo_ml.customer_churn_auto_model TO role

analyts_prediction_role

The source data to create a model can be in Redshift or any other source
that you can access from Redshift, including your Amazon Simple Storage
Service (Amazon S3) S3 data lake via Spectrum or other sources using the
Redshift federated query capability. At the time of writing, Amazon Aurora
and Amazon RDS for PostgreSQL and MySQL are supported. More details
are available here:
https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.xhtml.

Amazon Redshift ML and Amazon SageMaker manage all data
conversions, permissions, and resource usage. The trained model is then
compiled by SageMaker Neo and made available as a user-defined function
in Amazon Redshift so that users can make predictions using simple SQL.

https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.xhtml

Once your model is trained and available as a function in Amazon Redshift,
you can run prediction queries at scale and efficiently, locally in Amazon
Redshift.

See the process flow here in Figure 4.1:

Figure 4.1 – The Redshift ML CREATE MODEL process flow

Now, let us go into more detail on how you can use the CREATE MODEL
statement.

A CREATE MODEL overview
The CREATE MODEL statement allows for flexibility when addressing the
various use cases you may need. There are four main types of CREATE MODEL
statements:

AUTO everything

AUTO with user guidance, where a user can provide the problem type

AUTO OFF, with customized options provided by the user

Bring your own model (BYOM)

Figure 4.2 illustrates the flexibility available when training models with
Amazon Redshift ML:

Figure 4.2 – Amazon Redshift ML flexibility

In this chapter, we will provide an overview of the various types of CREATE
MODEL statements. Subsequent chapters will provide in-depth examples of
how to create all the different types of models, load the data to Redshift,
and split your data into training and testing datasets.

In this section, we will walk you through the options available to create
models and the optional parameters available that you can specify. All of
the examples in this chapter are informational to prepare you for the
remaining chapters. You will create your first model in Chapter 5.

AUTO everything

When you execute a CREATE MODEL command to solve a supervised learning
problem using AUTO everything, Amazon Redshift ML and Amazon
SageMaker manage all the data preprocessing, model training, and model
tuning for you. Data will be exported from Amazon Redshift to Amazon
S3, where SageMaker will train and tune up to 100 models. SageMaker
Autopilot will automatically determine the algorithm and problem type.
The best-trained model is then compiled by SageMaker Neo and made
available as a user-defined function in Amazon Redshift so that users can
make predictions using simple SQL.

See the following syntax for an AUTO everything model:

CREATE MODEL model_name

 FROM { table_name | (select_query) }

 TARGET column_name

 FUNCTION prediction_function_name

 IAM_ROLE { default }

 SETTINGS (

 S3_BUCKET 'bucket',

 [MAX_CELLS integer]

)

You simply supply a table name or SQL statement for the data you want to
use in training, along with the TARGET column that you are trying to predict.

Let’s apply this to a simple example. Let’s assume we have a table called
reservation_history that contains hotel reservation data, and we want to
determine whether guests are likely to cancel an upcoming reservation:

CREATE TABLE reservation_history (

customerid bigint ,

city character varying(50),

reservation_date timestamp without time zone,

loyalty_program character (1),

age bigint,

marital_status character (1),

cancelled character (1)

)

DISTSTYLE AUTO;

The CREATE MODEL statement would look like this (note that this is
informational; you do not need to run this):

CREATE MODEL predict_guest_cancellation

 FROM reservation_history

 TARGET cancelled

 FUNCTION predict_cancelled_reservation

 IAM_ROLE default

 SETTINGS (

 S3_BUCKET '<<your-s3-bucket>>'

)

In this CREATE MODEL statement, we only provided the minimum required
parameters, which are IAM_ROLE and S3_BUCKET. The TARGET parameter is
cancelled, which is what we will try to predict, based on the input we send
to the CREATE MODEL statement. In this example, we send everything from

the reservation_history table. The FUNCTION name is a description of the
function that will be used later for predictions. The IAM_ROLE parameter will
be attached to your serverless endpoint and provides access to SageMaker
and an S3 bucket, which will contain the artifacts generated by your CREATE
MODEL statement. Refer to Chapter 2, where we showed how to set up an
IAM role.

Amazon SageMaker will automatically determine that this is a binary
classification model, since our TARGET can only be one of two possible
values. Amazon SageMaker will also choose the best model type. At the
time of writing, the supported model types for supervised learning are as
follows:

XGBoost: Based on the gradient-boosted trees algorithm

Linear Learner: Provides an increase in speed to solve either
classification or regression problems

MLP: A deep learning algorithm using a multilayer perceptron

You will create models using each of these models in subsequent chapters.

AUTO with user guidance

More advanced users with a good understanding of ML may wish to
provide more inputs to a model, such as model _type, problem_type,
preprocesors, and objective.

Using our reservation example, we will build on the AUTO capabilities and
specify a few more parameters:

MODEL_TYPE: XGBoost

PROBLEM_TYPE: binary_classification

Objective: F1

S3_GARBAGE_COLLECT – OFF: If set to OFF, the resulting datasets used to
train the models remain in Amazon S3 and can be used for other
purposes, such as troubleshooting

MAX_RUNTIME – 1800: This is one way to control the costs of model
training by limiting the training time to 1800 seconds; the default is 5400
seconds

By specifying MODEL_TYPE and/or PROBLEM_TYPE along with the Objective
parameters, you can shorten the amount of time needed to train a model,
since SageMaker does not have to determine these. Here is an example of
the CREATE MODEL statement:

CREATE MODEL predict_guest_cancellation

 FROM reservation_history

 TARGET cancelled

 FUNCTION predict_cancelled_reservation

 IAM_ROLE default

 MODEL_TYPE XGBoost

 PROBLEM_TYPE BINARY CLASSIFICATION

 OBJECTIVE 'F1'

 SETTINGS (

 S3_BUCKET '<<your-S3-bucket>>',

 MAX_RUNTIME 1800

);

NOTE
Increasing MAX_RUNTIME and MAX_CELLS often improves model quality by allowing

SageMaker to explore more candidates. If you want faster iteration or exploration of your

dataset, reduce MAX_RUNTIME and MAX_CELLS. If you want improved accuracy of models,

increase MAX_RUNTIME and MAX_CELLS.

It is a good practice to specify the problem type and objective, if known, to
shorten training time. To improve model accuracy, provide more data if
possible and include any features (input) that can influence the target
variable.

Additionally, you can add your own preprocessors by specifying
transformers. At the time of writing, Amazon Redshift ML supports 10
transformers including OneHotEncoder, Ordinal Encoder, and
StandardScaler. You can find the complete list here:
https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.x
html#r_user_guidance_create_model.

Amazon Redshift ML stores the trained transformers and automatically
applies them as part of the prediction query. You don’t need to specify them
when generating predictions from your model.

Let’s take, as an example, using OneHotEncoder, which is used to convert a
categorical value such as country or gender into a numeric value (binary
vector) so that ML algorithms can better do predictions. Let’s create a
model using one-hot encoding for our input columns, marital_status and
loyalty_program. Note that this model is an example, and you do not need
to run this statement:

 CREATE MODEL predict_guest_cancellation

 FROM reservation_history

 TARGET cancelled

 FUNCTION predict_cancelled_reservation

 IAM_ROLE default

 MODEL_TYPE XGBoost

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_user_guidance_create_model

 PROBLEM_TYPE BINARY CLASSIFICATION

 OBJECTIVE 'F1'

 PREPROCESSORS '[

 {"ColumnSet": [

 "loyalty_program",

 "marital_status"

],

 "Transformers" :[

 "OneHotEncoder"

]

]

 }

]'

 SETTINGS (

 S3_BUCKET '<<your-S3-bucket>>',

 MAX_RUNTIME 1800

);

So far, all the CREATE MODEL examples we showed use AUTO ON. This is the
default if you do not specify this parameter. Now, let’s move on to how you
can do your own model tuning using AUTO OFF with XGBoost.

XGBoost (AUTO OFF)

As an ML expert, you have the option to do hyperparameter tuning by using
the AUTO OFF option with the CREATE MODEL statement. This gives you full
control and Amazon Redshift ML does not attempt to discover the optimal
preprocessors, algorithms, and hyperparameters.

Let’s see what the CREATE MODEL syntax looks like using our example
reservation dataset.

We will specify the following parameters:

AUTO OFF: Turns off the automatic discovery of a preprocessor, an
algorithm, and hyperparameters

MODEL_TYPE:- xgboost

OBJECTIVE: 'binary:logistic'

PREPROCESSORS: 'none'

HYPERPARAMETERS: DEFAULT EXCEPT(NUM_ROUND '100'/)

Refer here for a list of hyperparameters for XGBoost:
https://docs.amazonaws.cn/en_us/redshift/latest/dg/:

r_create_model_use_cases.xhtml#r_auto_off_create_model

As of this writing, 'none' is the only available option to specify for
PREPROCESSORS when using AUTO OFF. Since we cannot specify one-hot
encoding, we can use a case statement with our SQL to apply this:

CREATE MODEL predict guest_cancellation

 FROM

 (Select customerid,

 city,

 reservation_date,

 case when loyalty_program = 'Y' then 1 else 0 end as

loyalty_program_y,

 case when loyalty_program = 'N' then 1 else 0 end as

loyalty_program_n,

 age,

 case when marital_status = 'Y' then 1 else 0 end as

married,

 case when marital_status = 'N' then 1 else 0 end as

not_married,

 cancelled

 from reservation_hitory)

 TARGET cancelled

https://docs.amazonaws.cn/en_us/redshift/latest/dg/

 FUNCTION predict_cancelled_reservation

 IAM_ROLE default

 AUTO OFF

 MODEL_TYPE XGBoost

 OBJECTIVE 'binary:logistic'

 PREPROCESSORS 'none'

 HYPERPARAMETERS DEFAULT EXCEPT (NUM_ROUND '100')

 SETTINGS (

 S3_BUCKET 'bucket',

 MAX_RUNTIME 1800

);

In Chapter 10, you will build an XGBoost model using AUTO OFF and gain a
better understanding of this option.

Now, let’s take a look at another AUTO OFF option using the K-means
algorithm.

K-means (AUTO OFF)

The K-means algorithm is used to group data together that isn’t labeled.
Since this algorithm discovers groupings in your data, it solves an
“unsupervised” learning problem.

Let’s see what a sample CREATE MODEL looks like if we want to group our
reservation_history data:

AUTO OFF: Turns off the automatic discovery of a preprocessor, an
algorithm, and hyperparameters

MODEL_TYPE: KMEANS

PREPROCESSORS: OPTIONAL (at the time of writing, Amazon Redshift
supports StandScaler, MinMax, and NumericPassthrough for KMEANS)

HYPERPARAMETERS: DEFAULT EXCEPT (K 'N'), where N is the number of
clusters you want to create

Here is an example of a CREATE MODEL statement. Note that you will not run
this statement:

CREATE MODEL guest_clusters

 FROM

 (Select

 city,

 reservation_date,

 loyalty_program,

 age,

 marital_status

 from reservation_hitory)

 FUNCTION get_guest_clusters

 IAM_ROLE default

 AUTO OFF

 MODEL_TYPE KMEANS

 PREPROCESSORS 'none'

 HYPERPARAMETERS DEFAULT

 EXCEPT (K '5')

 SETTINGS (

 S3_BUCKET '<<your-S3-bucket>>'

);

Note that we are creating five clusters with this model. With the K-means
algorithm, it is important to experiment with a different number of clusters.
In Chapter 8, you will get to dive deep into creating K-means models and
determining how to validate the optimal clusters.

Now, let’s take a look at how you can run prediction queries using models
built outside of Amazon Redshift ML.

BYOM

Additionally, you can use a model trained outside of Amazon Redshift with
Amazon SageMaker for either local or remote inference in Amazon
Redshift.

Local inference
Local inference is used when models are trained outside of Redshift in
Amazon SageMaker. This allows you to run inference queries inside of
Amazon Redshift without having to retrain a model.

Let’s suppose our previous example of building a model to predict whether
a customer will cancel a reservation was trained outside of Amazon
Redshift. We can bring that model to Redshift and then run inference
queries.

Our CREATE MODEL sample will look like this:

model_name: This is the name you wish to give the local model in
Redshift

FROM: This is job_name from Amazon SageMaker – you can find this in
Amazon SageMaker under Training Jobs

FUNCTION: The name of the function to be created along with the input
data types

RETURNS: The data type of the value returned by the function:

CREATE MODEL predict_guest_cancellation_local_inf

 FROM 'sagemaker_job_name'

 FUNCTION predict_cancelled_reservation_local(bigint,

varchar, timestamp, char, bigint, char)

 RETURNS char

 IAM_ROLE default

 SETTINGS (

 S3_BUCKET '<<your-S3-bucket>>');

Note that the data types in FUNCTION match the data types from our
reservation_history table, and RETURNS matches the data type of our
TARGET variable, which is cancelled.

You can derive the SageMaker JobName by navigating to the AWS
Management Console and going to SageMaker:

Figure 4.3 – Console Home

After clicking on Amazon SageMaker, click on Training jobs, as shown
in Figure 4.4:

Figure 4.4 – Training jobs

Next, note the job name of the model you wish to use for local inference,
which is what you will put in your CREATE MODEL statement (see Figure 4.5):

Figure 4.5 – The training job name

Remote inference
Remote inference is useful if you have a model created in SageMaker for an
algorithm that is not available natively in Amazon Redshift ML. For

example, anomaly detection can be done using the Random Cut Forest
algorithm from SageMaker. You can create a model that references the
endpoint of the SageMaker model and then be able to run anomaly
detection in Amazon Redshift.

Our CREATE MODEL sample will look like this:

model_name: The name you wish to give the local model in Redshift

FUNCTION: The name of the function to be created along with the input
data types

RETURNS: The data type of the value returned by the function

SAGEMAKER: The name of the Amazon SageMaker endpoint:

CREATE MODEL random_cut_forest

FUNCTION remote_fn_rcf(int)

RETURNS decimal(10,6)

SAGEMAKER 'sagemaker_endpoint'

IAM_ROLE default;

Note that the data types in FUNCTION are for the input we send, and RETURNS
is the data type of the data we receive when invoking the function.

You can derive the SageMaker endpoint by navigating to the AWS
Management Console, going to SageMaker, and then clicking on
Endpoints:

Figure 4.6 – Endpoints

After you click on Endpoints, as shown in Figure 4.6, you can see the
endpoint names, as shown in Figure 4.7:

Figure 4.7 – The endpoint names

Then, note the name of the endpoint for the model you wish to use for
remote inference and put it in your CREATE MODEL statement.

You will dive deep into BYOM in Chapter 11 and get hands-on experience
creating models for both local and remote inference.

Summary
In this chapter, we discussed why Amazon Redshift ML is a good choice to
use data in your data warehouse to make predictions.

By bringing ML to your data warehouse, Amazon Redshift ML enables you
to greatly shorten the amount of time to create and train models by putting
the power of ML directly in the hands of your developers, data analysts, and
BI professionals.

Your data remains secure; it never leaves your VPC. Plus, you can easily
control access to create and use models.

Finally, we showed you different methods of creating models in Redshift
ML, such as using AUTO, how to guide model training, and an advanced
method to supply hyperparameters.

Now, you understand how ML fits into your data warehouse, how to use
proper security and configuration guidelines with Redshift ML, and how a
model is trained in Amazon SageMaker.

In the next chapter, you will get hands-on and create your first model using
Amazon Redshift ML, learn how to validate the model, and learn how to
run an inference query.

5

Building Your First Machine Learning
Model
In the previous chapter, you learned about Redshift Machine Learning
(ML) benefits such as eliminating data movement and how models can be
created using simple Structured Query Language (SQL) commands.

In this chapter, you are going to build your first machine learning model by
using the standard SQL dialect. Amazon Redshift makes it very easy to use
familiar SQL dialect to train, deploy, and run inferences against machine
learning models. This approach makes it easy for different data personas,
for example, database developers, database engineers, and citizen data
scientists, to train and build machine learning models without moving data
outside of their data warehouse platform and without having to learn a new
programming language.

In this chapter, you will learn about using Amazon Redshift ML simple
CREATE MODEL, which uses the Amazon SageMaker Autopilot
framework behind the scenes, to create your first model. You will also learn
how to evaluate a model to make sure the model performance is good and
that it is usable and not biased. When you are done with this chapter, you
should be familiar with the Redshift ML simple CREATE MODEL command
and different methods used to evaluate your ML model.

In this chapter, to build your first machine learning model, we will go
through the following main topics:

Redshift ML simple CREATE MODEL

Evaluating model performance

Technical requirements
This chapter requires a web browser and the following:

An AWS account.

An Amazon Redshift Serverless endpoint.

Amazon Redshift Query Editor v2.

Completing the Getting started with Amazon Redshift Serverless section
in Chapter 1.

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/

Data files required for this chapter are located in a public S3 bucket:
s3://packt-serverless-ml-redshift/

Let’s begin!

Redshift ML simple CREATE MODEL
Redshift ML simple CREATE MODEL is a feature in Amazon Redshift
that allows users to create machine learning models using SQL commands,
without the need for specialized skills or software. It simplifies the process
of creating and deploying machine learning models by allowing users to use

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/%0D
https://s3//packt-serverless-ml-redshift/%0D

familiar SQL syntax to define the model structure and input data, and then
automatically generates and trains the model using Amazon SageMaker.
This feature can be used for a variety of machine learning tasks, including
regression, classification, and clustering.

Before we dive into building the first ML model, let us set the stage by
defining a problem statement that will form the basis of our model-building
solution.

We are going to use a customer sales dataset to build the first machine
learning model. Business leaders at the fictitious ABC Company are
grappling with dwindling sales. The data team at ABC Company has
performed descriptive and diagnostic analytics and determined that the
cause of decreasing sales is departing customers. To stop this problem, data
analysts who are familiar with SQL language and some machine learning
concepts have tapped into Redshift ML. Business users have documented
which customers have and have not churned and teamed up with data
analysts.

To solve the business problem, the data analysts start by analyzing the sales
dataset. With Redshift SQL commands, they will write SQL aggregate
queries and create visualizations to understand the trends. The data analyst
team then creates an ML model using the Redshift ML simple CREATE MODEL
command. Finally, the data analysts evaluate the model performance to
make sure the model is useful.

Uploading and analyzing the data

The dataset used for this chapter is located here: s3://packt-serverless-ml-
redshift/. We have modified the dataset to better fit the chapter’s
requirements.

DATASET CITATION
This dataset is attributed to the University of California Irvine Repository of Machine
Learning Datasets (Jafari-Marandi, R., Denton, J., Idris, A., Smith, B. K., & Keramati, A.
(2020). Optimum Profit-Driven Churn Decision Making: Innovative Artificial Neural Networks
in Telecom Industry. Neural Computing and Applications.

This dataset contains customer churn information. The following table lists
the metadata of the dataset:

Name Data Type Definition

state varchar(2) US state in which the customer is located

account_length int Length of customer account

area_code int Area code or zip code of the customer

phone varchar(8) Phone number of the customer

intl_plan varchar(3) International plan subscriber

vMail_plan varchar(3) Voicemail plan subscriber

vMail_message int Voicemail message subscriber

day_mins float Aggregated daily minutes

day_calls int Aggregated daily calls

https://s3//packt-serverless-ml-redshift/

day_charge float Aggregated daily charges

total_charge float Total charges

eve_mins float Evening minutes

eve_calls int Evening calls

eve_charge float Evening charges

night_mins float Nightly minutes

night_calls int Nightly calls

night_charge float Nightly charges

intl_mins float International minutes

intl_calls int International calls

intl_charge float International charges

cust_serv_calls int Number of calls to customer service

churn varchar(6) Whether customer churned or not

record_date date Record updated date

Table 5.1 – Customer call data

After successfully connecting to Redshift as an admin or database
developer, create the schema and load data into Amazon Redshift as
follows:

1. Navigate to Redshift query editor v2, connect to the
Serverless:default endpoint, and connect to the dev database.

Create a new editor and rename the untitled query editor by saving it as
Chapter5, as shown in Figure 5.1:

Figure 5.1 – Connecting to query editor v2

2. Create a Redshift schema named Chapter5_buildfirstmodel. Redshift
schemas contain tables, views, and other named objects. For this
chapter, tables and machine learning models will be created in this
schema:

Create schema chapter5_buildfirstmodel;

3. Create a Redshift table named customer_calls_fact. This table is used
to load the dataset that has customer call information. This table is
natively created in Redshift and used for training and validating the
Redshift ML model:

CREATE TABLE IF NOT EXISTS

chapter5_buildfirstmodel.customer_calls_fact (

state varchar(2),

account_length int,

area_code int,

phone varchar(8),

intl_plan varchar(3),

vMail_plan varchar(3),

vMail_message int,

day_mins float,

day_calls int,

day_charge float,

total_charge float,

eve_mins float,

eve_calls int,

eve_charge float,

night_mins float,

night_calls int,

night_charge float,

intl_mins float,

intl_calls int,

intl_charge float,

cust_serv_calls int,

churn varchar(6),

record_date date)

Diststyle AUTO;

4. Load the customer call data into the Redshift table by using the
following command:

 COPY chapter5_buildfirstmodel.customer_calls_fact

FROM 's3://packt-serverless-ml-

redshift/chapter05/customerdime/'

IAM_ROLE default

delimiter ',' IGNOREHEADER 1

region 'eu-west-1';

We use the Redshift COPY command to load the data into our table. COPY
commands load data in parallel into a Redshift table. You can load terabytes
of data by using the COPY command.

5. In the final step, we will analyze the customer churn fact table by
creating a histogram for customer churn. To do this, let’s use the query
editor v2 chart feature to create a histogram chart. In order to create the
histogram, we need to count the number of customers who have
churned and not churned. To get this information, first, run the
following command:

SELECT churn, count(*) Customer_Count FROM

chapter5_buildfirstmodel.customer_calls_fact

GROUP BY churn

;

Now, click on the Chart option found on the right-hand side in the Result
pane to view the histogram:

Figure 5.2 – Customers churned versus not churned histogram

From the preceding chart, you can see that the customer_calls_fact table
has 3333 customers, of which 483 have churned.

Now, we analyzed the dataset and found that there are customers who have
churned. The next step is to create a machine learning model. For this, we
will use the Redshift ML simple CREATE MODEL method.

Diving deep into the Redshift ML
CREATE MODEL syntax
Since this is the first time you are going to use the CREATE MODEL syntax,
let’s refresh the basic constructs of the command here.

Redshift ML provides the easy-to-use CREATE MODEL syntax to create ML
models. In this section, we will focus on a simple form of the CREATE MODEL
command. In later chapters, you will learn about other forms of creating
model statements.

Simple CREATE MODEL is the most basic form of Redshift CREATE MODEL
statement. It is geared toward the personas who are not yet ready to deal
with all the intricacies of the machine learning process. This form of model
creation is also used by experienced personas such as citizen data scientists
for its simplicity in creating a machine learning model. Data cleaning is an
essential step for any ML problem, otherwise, it follows the principle of
garbage in, garbage out. Data cleaning still remains a necessary task,
however, with Redshift ML data transformation, standardization and model
selection won’t be necessary.

We use the following command for simple model creation:

CREATE MODEL model_name

 FROM { table_name | (select_query) }

 TARGET column_name

 FUNCTION prediction_function_name

 IAM_ROLE { default }

 SETTINGS (

 S3_BUCKET 'bucket',

 [MAX_CELLS integer]

)

In the preceding CREATE MODEL syntax, as a user, you specify your dataset –
in our case, customer_calls_fact – in the FROM clause. We set the variable
that we are targeting to predict, in our case churn, in the TARGET parameter.
As a user, you also give a name to the function, which you will use in select
queries to run predictions.

For more information about simple CREATE MODEL parameters, please refer to
the Redshift public document here:
https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.x
html#r_simple_create_model

We’ve learned about the generic simple CREATE MODEL syntax. Now, let’s
create the syntax for our dataset and run it.

Creating your first machine learning
model
Finally, we will now build our first ML model to predict customer churn
events. As this is our first machine learning model, let’s use the simple
CREATE MODEL command. This option uses Amazon SageMaker Autopilot,
which means, without the heavy lifting of building ML models, you simply

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_simple_create_model%0D

provide a tabular dataset and select the target column to predict and
SageMaker Autopilot automatically explores different solutions to find the
best model. This includes data preprocessing, model training, and model
selection and deployment. AutoMode is the default mode:

1. Redshift ML shares training data and artifacts between Amazon
Redshift and SageMaker through an S3 bucket. If you don’t have one
already, you will need to create an S3 bucket. To do this, navigate to the
Amazon S3 console and click on the Create bucket button:

Figure 5.3 – S3 console

2. On the Create bucket page, under Bucket name, provide a name, for
example, serverlessmachinelearningwithredshift-<your account id>,

where <your account id> is your AWS account number.

Figure 5.4 – Creating an S3 bucket

3. Before we send our dataset to the CREATE MODEL command, we will split
the dataset into two parts – one is the training dataset, which is used to
train the machine learning model, and the other one is for testing the
model once it is created. We do this by filtering customer records that
have record_date of less than '2020-08-01' for training and
record_date greater than '2020-07-31' for testing. Run the following
queries to check our record split:

select sum(case when record_date <'2020-08-01' then 1 else 0

end) as Training_Data_Set,

sum(case when record_date >'2020-07-31' then 1 else 0 end) as

Test_Data_Set

from chapter5_buildfirstmodel.customer_calls_fact

In Figure 5.5, we can see we have 2714 records in the training set and 619
records in the test set.

Figure 5.5 – Training and test dataset record count

We apply the filtering condition when training and testing the model on our
dataset. In the next step, we are going to create the model using this filter
condition on our dataset.

4. Now run the following code to create customer_churn_model. Make sure
to replace <your account id> with the correct AWS account number.
Please note that since we are going to use simple CREATE MODEL, we set
the max allowed time through the MAX_RUNTIME parameter. This is the
maximum training time that Autopilot will take. We have set it to 1,800
seconds, which is 30 minutes. If you don’t specify a value for
MAX_RUNTIME it will use the default value of 5,400 seconds (90 minutes):

CREATE MODEL chapter5_buildfirstmodel.customer_churn_model

FROM (SELECT state,

 account_length,

 area_code,

 phone,

 intl_plan,

 vMail_plan,

 vMail_message,

 day_mins,

 day_calls,

 day_charge,

 total_charge,

 eve_mins,

 eve_calls,

 eve_charge,

 night_mins,

 night_calls,

 night_charge,

 intl_mins,

 intl_calls,

 intl_charge,

 cust_serv_calls,

 replace(churn,'.','') as churn

 FROM chapter5_buildfirstmodel.customer_calls_fact

 WHERE record_date < '2020-08-01'

)

TARGET churn

FUNCTION predict_customer_churn

IAM_ROLE default

SETTINGS (

 S3_BUCKET 'serverlessmachinelearningwithredshift-<your

account id>',

 MAX_RUNTIME 1800

)

;

Let us understand more about the preceding command:

The SELECT query in the FROM clause specifies the training data

The TARGET clause specifies which column is the label for which the
CREATE MODEL statement builds a model to predict

The other columns in the training query are the features (input) used to
predict the churn variable

The predict_customer_churn function is the name of an inference
function used in SELECT queries to generate predictions

S3_Bucket is the location where Redshift ML saves artifacts when
working with SageMaker

Having MAX_RUNTIME set as 1,800 seconds specifies the maximum time
that SageMaker will take to train our model

After you run the CREATE MODEL command, run the following command to
check the status of the model:

SHOW MODEL chapter5_buildfirstmodel.customer_churn_model;

The Redshift ML CREATE MODEL statement is asynchronous, which means
that when the model is under training, the query shows it is completed and

the training is happening in Amazon SageMaker. To find out the status of
the model, run the SHOW MODEL command.

In the following screenshot, you can see the SHOW MODEL output shows
Model State as TRAINING:

Figure 5.6 – Model State TRAINING

When the same SHOW MODEL command is run after a while, Model State is
displayed as READY, which means data processing, model training, model

selection, and model deployment to Redshift is completed successfully.
From the following screenshot, you can see that Model Status now shows
READY. You can also see the Estimated Cost value, which represents
Amazon SageMaker training hours. This value does not equal the elapsed
training time as it is an accumulation of training time on the SageMaker
instances used.

Figure 5.7 – Model State READY

Apart from Model State, the SHOW MODEL command gives you other useful
information about the model, for example, the query used, Target Column,

Model Type, and Function Name to use when predicting. You can see that
Model Type in our example is xgboost, which tells you that Amazon
SageMaker has chosen the XGBoost algorithm to build the binary
classification model:

Figure 5.8 – Model State READY continuation

If you read further into the output, Redshift ML has done the bulk of the
work for you, for example, it has selected and set the following parameters:

Problem Type is set to BinaryClassification. This is true since our
target variable has two distinct values in it, true and false. So, this is a
binary classification problem.

Validation and Objective is set to F1. F1 score is a recommended
approach when evaluating binary scores since it considers both
precision and recall. Other objectives that SageMaker Autopilot may
select for a binary classification model are accuracy and area under
curve (AUC).

We have created the model successfully as Model State shows as READY.
The next step is to make use of prediction functions. We use them in SELECT
queries. The next sections show how to do so.

Evaluating model performance
Now we have created the model, let’s dive into the details of its
performance.

When building machine learning models, it is very important to understand
the model performance. You do this to make sure your model is useful and
is not biased to one class over another and to make sure that the model is
not under-trained or over-trained, which will mean the model is either not
predicting classes correctly or is predicting only some instances and not
others.

To address this problem, Redshift ML provides various objectives to
measure the performance of the model. It is prudent that we test the model
performance with the test dataset that we set aside in the previous section.
This section explains how to review the Redshift ML objectives and also
validate the model performance with our test data.

Redshift ML uses several objective methods to measure the predictive
quality of machine learning models.

Checking the Redshift ML objectives

Figure 5.9 shows the SHOW MODEL output. It displays two values that are of
interest to us. One is Objective and the other is validation:f1_binary. The
first value to look at is Objective. It is set to F1 for us. F1 or F-score is the
most commonly used performance evaluation metric used for classification
models. It is a measure for validating dataset accuracy. It is calculated from
the precision and recall of the validations where precision is the number of
true positive results divided by the number of all positive results included,
and recall is the number of true positive results divided by the number of all
records that should have been identified as positive. You can learn more
about F-score here: https://en.wikipedia.org/wiki/F-score.

Run the following command in query editor v2:

SHOW MODEL chapter5_buildfirstmodel.customer_churn_model;

The output in Figure 5.9 shows the value of F1 is found in
validation:f1_binary, which is 0.90. The highest possible value for an F1

https://en.wikipedia.org/wiki/F-score

score is 1 and the lowest is 0. The highest score of 1 would signify perfect
precision and recall by a model. In our case, it is 90%, which is really good.

Figure 5.9 – Model objective values

We have seen that the model created by Autopilot has a good F-score and is
ready to use to predict whether customers are going to churn or not. In the
next section, we will use the prediction function to generate the prediction
values along with probability scores.

Running predictions

Now let’s invoke our predict_customer_churn and
predict_customer_churn_prob prediction functions through the SELECT
command. Redshift ML creates two functions for us to use:

One is created with the same name as the one we gave when creating
the model, in this case, predict_customer_churn, which returns the class
label or predicted value, for example, 0 or 1.

The other function, predict_customer_churn_prob, in addition to
returning the class label or predicted value, also returns the probability
that the predicted value is correct.

To test these functions, run the following query. In the following query,
you’ll notice that we are using two prediction functions inside a SELECT
command and passing all the input columns that were passed when creating
the ML model. These two functions will return a label and probability score
as output. We are also testing the prediction function by filtering rows
where record_date is greater than '2022-07-31'. Since this is an unseen
dataset, it should act as a challenging dataset for our ML model.

It is also important to note that all the predictions are happening locally on a
Redshift cluster. When the SELECT query is run, there are no calls made to
Amazon SageMaker. This makes all predictions free of cost:

SELECT area_code ||phone accountid, replace(churn,'.','') as

Actual_churn_class,

 chapter5_buildfirstmodel.predict_customer_churn(

 state,account_length,area_code, phone,intl_plan,

 vMail_plan, vMail_message, day_mins, day_calls,

 day_charge, total_charge, eve_mins, eve_calls,

 eve_charge, night_mins, night_calls,

 night_charge, intl_mins, intl_calls, intl_charge,

 cust_serv_calls) AS predicted_class,

 chapter5_buildfirstmodel.predict_customer_churn_prob(

 state, account_length, area_code, phone, intl_plan,

 vMail_plan, vMail_message, day_mins, day_calls,

 day_charge, total_charge, eve_mins, eve_calls,

 eve_charge, night_mins, night_calls,night_charge,

 intl_mins, intl_calls, intl_charge, cust_serv_calls)

 AS probability_score

 FROM chapter5_buildfirstmodel.customer_calls_fact

WHERE record_date > '2020-07-31'

;

You can see the output in the following screenshot:

Figure 5.10 – Running predictions

In the preceding screenshot, observe that the predicted_class values and
probability_score values for each customer are shown. From the
predicted_class column, you can understand that our model is predicting
whether the customer is going to churn or not, and from the
probability_score column, you can understand that the model is, for
example, for the first row, 99% confident that the customer with account ID
415382-4657 is not going to churn.

We have witnessed that prediction is working without any issues. In the
next section, let’s check how the model is performing compared to ground
truth.

Comparing ground truth to predictions

Run the following query to compare actual versus predicted customer
churn:

WITH infer_data AS (

 SELECT area_code ||phone accounted,

 replace(churn,'.','') as churn,

 chapter5_buildfirstmodel.predict_customer_churn(

 state,

 account_length,

 area_code,

 phone,

 intl_plan,

 vMail_plan,

 vMail_message,

 day_mins,

 day_calls,

 day_charge,

 total_charge,

 eve_mins,

 eve_calls,

 eve_charge,

 night_mins,

 night_calls,

 night_charge,

 intl_mins,

 intl_calls,

 intl_charge,

 cust_serv_calls) AS predicted

 FROM chapter5_buildfirstmodel.customer_calls_fact

WHERE record_date > '2020-07-31'

)

SELECT * FROM infer_data where churn!=predicted;

The following screenshot shows the customers where the ML model made a
mistake:

NOTE
Results will vary as each trained model will have slight differences.

Figure 5.11 – Incorrect predictions

We have seen the model predictions and compared them with ground truth.
In the next section, we will learn about feature importance.

Feature importance

Feature importance is a measure of how much each feature contributes to
the model’s predictions. SageMaker Autopilot calculates the importance of
features and Redshift ML provides explain_model functions to retrieve
feature importance. This will help you to understand which features are
strongly related to the target variable, which features are important to the
model and which are not, and from this you can reduce the number of
dimensions that you feed into your machine learning model.

The following is the SQL code that you can run to retrieve the feature
importance of our model:

Select

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata ;

The following is the JSON format output of feature importance. You can
read and understand the importance of each feature.

Figure 5.12 – Feature importance raw output

For better readability of the feature importance, you may execute the
following SQL code:

select t1.feature_imp, t1.value from

(

Select

'account_length' as feature_imp,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.account_length as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'area_code' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.area_code as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'cust_serv_calls' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.cust_serv_calls as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'day_calls' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.day_calls as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'day_charge' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.day_charge as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'day_mins' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.day_mins as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'eve_calls' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.eve_calls as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'eve_charge' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.eve_charge as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'eve_mins' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.eve_mins as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'intl_calls' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.intl_calls as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'intl_charge' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.intl_charge as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'intl_mins' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.intl_mins as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'intl_plan' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.intl_plan as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'inight_calls' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.night_calls as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'night_charge' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.night_charge as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'night_mins' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.night_mins as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'phone' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.phone as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'state' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.state as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'total_charge' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.total_charge as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'vmail_message' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.vmail_message as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

union

select 'vmail_plan' as feature_imp ,

jsondata.featureimp.explanations.kernel_shap.label0.global_shap_v

alues.vmail_plan as value

from (select explain_model(

'chapter5_buildfirstmodel.customer_churn_model')as featureimp)

jsondata

) t1

order by value desc

Figure 5.13 – Feature Importance

You can use feature importance to understand the relationship between each
feature and target variable and the features that are not important.

We have seen what features contribute highly to the model, now let’s look
at how model performance metrics are calculated on our test dataset.

Model performance
Let’s use Redshift SQL to compute a confusion matrix to evaluate the
performance of the classification model. Using a confusion matrix, you can
identify true positives, true negatives, false positives, and false negatives,
based on which various statistical measures such as accuracy, precision,
recall, sensitivity, specificity, and finally, F1 score are calculated. You can
read more about the concept of the confusion matrix here:
https://en.wikipedia.org/wiki/Confusion_matrix.

The following query uses a WITH clause, which implements a common table
expression in Redshift. This query has the following three parts:

The first part is about the SELECT statement within the WITH clause,
where we predict customer churn and save it in memory. This dataset is
named infer_data.

The second part, which is below the first SELECT statement, reads
infer_data and builds the confusion matrix, and these details are stored
in memory in a dataset called confusionmatrix.

In the third part of the statement, note that the SELECT statement builds
the model performance metrics such as F1 score, accuracy, recall, and
so on.

https://en.wikipedia.org/wiki/Confusion_matrix

Run the following query to build a confusion matrix for the test dataset:

WITH infer_data AS (

 SELECT area_code ||phone accountid, replace(churn,'.','') as

churn,

 chapter5_buildfirstmodel.predict_customer_churn(

 state, account_length, area_code, phone,

 intl_plan, vMail_plan, vMail_message, day_mins,

 day_calls, day_charge, total_charge, eve_mins,

 eve_calls, eve_charge, night_mins, night_calls,

 night_charge, intl_mins, intl_calls,

 intl_charge, cust_serv_calls) AS predicted

 FROM chapter5_buildfirstmodel.customer_calls_fact

WHERE record_date > '2020-07-31'),

confusionmatrix as

(

SELECT case when churn ='True' and predicted = 'True' then 1

else 0 end TruePositives,

case when churn ='False' and predicted = 'False' then 1 else 0

end TrueNegatives,

case when churn ='False' and predicted = 'True' then 1 else 0 end

FalsePositives,

case when churn ='True' and predicted = 'False' then 1 else 0 end

FalseNegatives

 FROM infer_data

)

select

sum(TruePositives+TrueNegatives)*1.00/(count(*)*1.00) as

Accuracy,--accuracy of the model,

sum(FalsePositives+FalseNegatives)*1.00/count(*)*1.00 as

Error_Rate, --how often model is wrong,

sum(TruePositives)*1.00/sum (TruePositives+FalseNegatives) *1.00

as True_Positive_Rate, --or recall how often corrects are rights,

sum(FalsePositives)*1.00/sum (FalsePositives+TrueNegatives)*1.00

False_Positive_Rate, --or fall-out how often model said yes when

it is no,

sum(TrueNegatives)*1.00/sum (FalsePositives+TrueNegatives)*1.00

True_Negative_Rate, --or specificity, how often model said no

when it is yes,

sum(TruePositives)*1.00 / (sum

(TruePositives+FalsePositives)*1.00) as Precision, -- when said

yes how it is correct,

2*((True_Positive_Rate*Precision)/ (True_Positive_Rate+Precision)

) as F_Score --weighted avg of TPR & FPR

From confusionmatrix

;

We get the following output:

Figure 5.14 – Confusion matrix for the test dataset

By looking at the f_score value, you can confirm that the model has
performed well against our test dataset (record_date > '2020-07-31').
These records have not been seen by the model before, but 97% of the time,
the model is able to correctly predict the class value. This proves that the
model is useful and correctly predicts both classes – churn and no churn.
This model can now be given to the business units so it can be used to
proactively predict the customers who are about to churn and build
marketing campaigns for them.

Summary
In this chapter, you have learned how to create your first machine learning
model using a simple CREATE MODEL statement. While doing so, you
explored customer_calls_fact table data using query editor v2, learned

about the basic syntax of the CREATE MODEL statement, created a simple ML
model, learned how to read the model’s output, and finally, used Redshift
SQL to compute some of the model evaluation metrics yourself.

In the next chapter, you will use the basics that you have learned in this
chapter to build various classification models using Redshift ML.

6

Building Classification Models
In this chapter, you will learn about classification algorithms used in
machine learning (ML). You will learn about the various methods that
Redshift offers when you create classification models. This chapter will
provide detailed examples of both binary and multi-class classification
models and show you how to solve business problems with these modeling
techniques. By the end of this chapter, you will be in a position to identify
whether a business problem is a classification or not, identify the right
method that Redshift offers in training, and build a model.

In this chapter, we will go through the following main topics:

An introduction to classification algorithms

Creating a model syntax with user guidance

Training a binary classification model using the XGBoost algorithm

Training a multi-class classification model using the Linear Learner
model type

Technical requirements
This chapter requires a web browser and access to the following:

An AWS account

An Amazon Redshift Serverless endpoint

Amazon Redshift Query Editor v2

Completing the Getting started with Amazon Redshift Serverless section
in Chapter 1

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/.

An introduction to classification
algorithms
Classification is the process of categorizing any kind of entity or class so
that it is better understood and analyzed. The classifying process usually
happens as part of a pre-setup business process (for example, tagging a
product as defective or good after observing it), or through a return process
(for example, tagging a product as defective after the customer returned it
as defective). In either event, the important point is classifying an entity – in
this case, a product into a class (i.e., defective or not).

Figure 6.1 shows data that has been classified into two classes using three
input variables. The figure shows where a pair of Input and Output data
points are categorized into two classes. When output labels consist of only
two classes, it is called a binary classification problem:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/

Figure 6.1 – Binary classification

If the output variable consists of more than two classes – for example,
predicting whether a fruit is an apple, an orange, or a pear – then it is called
multi-class classification. Figure 6.2 shows data that has been classified
into multiple classes based on a set of three input variables. The figure
shows a multi-class classification chart, illustrating how input and output
pairs are classified into three classes:

Figure 6.2 – Multi-class classification

The classification process can also happen on data that does not have
classes defined yet. Let us continue to understand how this is possible.

It is not always the case that your entities are grouped or categorized in a
certain way. For example, if you want to analyze your customers’ purchase
history or clickstream activity, or if you want to group similar customers
based on demographics or shopping behavior, then classification algorithms
come in handy to analyze the data and group similar data points into
clusters. This type of classification modeling is called unsupervised
learning.

Establishing classes helps the analysis process – for example, once products
are tagged to a class label, you can easily retrieve a list of defective
products that are returned and then further study the characteristics, such as
store location, the demographics of the customer who returned the product,
and the season when a product was returned most. How and when classes
are defined and established enables businesses to conduct a deep-dive
analysis, not only answering questions such as where and what but also
training an ML model on historical data and classes, and predicting which
class an entity will fall into.

Common use cases where classification models are useful include the
following:

Customer behavior prediction

Document or image classification

Spam filtering

In this chapter, we will show you how to create different classification
models that Redshift offers you. Amazon Redshift provides XGBoost,
multilayer perceptron (MLP), and Linear Learner algorithms to train
and build a classification model.

In this chapter, you will begin the journey of learning about supervised
classification models by building binary classification models, using
XGBoost, and a multi-class classification model, using linear learner. MLP
models will be covered in Chapter 9, whereas unsupervised classification
modeling will be covered in Chapter 8.

Now, we will walk you through the detailed syntax of creating models with
Redshift ML.

Diving into the Redshift CREATE MODEL
syntax

In Chapter 4, we saw different variations of the Redshift CREATE MODEL
command and how a data analyst, citizen data scientist, or data scientist can
operate the CREATE MODEL command, with varying degrees of complexity. In
this section, we will introduce you to a citizen data scientist persona, who is
not fully aware of statistics but has good knowledge about identifying what
algorithm to use and what problem type can be applied to a business
problem. In the Redshift ML world, this type of model creation is known as
CREATE MODEL with user guidance.

We are going to explore the model type and problem type parameters of the
CREATE MODEL statement. As part of CREATE MODEL with user guidance,

you also have the option of setting a preprocessor, but we will leave that
topic for Chapter 10.

As an ML model creator, you will decide what algorithm to use and what
problem type to address. Redshift ML still performs the feature engineering
of independent variables behind the scenes. For example, out of 20 features,
Redshift ML will automatically identify the categorical variables and
numeric variables and create one-hot-encoded value or standardization of
numerical variables where applicable, along with various other tasks
required to complete the model training.

In summary, you let Redshift ML handle the bulk of data preparation tasks
for ML. As a model creator, you come up with an algorithm to be used and
a problem type to be solved. By preselecting an algorithm type and problem
type, Redshift ML will reduce the training type, as it trains the model on
other algorithms and problem types. Compared to the full AUTO CREATE
MODEL statement that we created in Chapter 5, CREATE MODEL with
user guidance takes less time.

As mentioned in the previous section, we will use the XGBoost algorithm
for binary classification and the linear learner algorithm for multi-class
classification.

You can learn more about XGBoost here:
https://docs.aws.amazon.com/sagemaker/latest/dg/XGBoost.xhtml.

And you can learn more about Linear Learner here:
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.xhtml.

Using a simple CREATE MODEL statement, Redshift ML will use SageMaker
Autopilot to automatically determine the problem type, algorithm, and the

https://docs.aws.amazon.com/sagemaker/latest/dg/XGBoost.xhtml
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.xhtml

best model type to use.

With Redshift ML, you can influence a model by providing user guidance.
You can choose model_type, problem_type, and objective when you issue
the CREATE MODEL statement. You can find more details on the syntax and
options here:
https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.x
html.

So far, we have discussed the basics of the Redshift ML CREATE MODEL
syntax and how you can provide guidance, such as model type and
objective, or choose to let Redshift ML automatically choose these for you.

Now, you will learn how to create a binary classification model and specify
the XGBoost algorithm.

Training a binary classification model
using the XGBoost algorithm
Binary classification models are used to solve the problem of predicting one
class of two possible classes – for example, predicting whether it will rain
or not. The goal is to learn about past data points and figure out which one
of the target buckets a particular data point will fall into. The typical use
cases of a binary classification model are as follows:

Predicting whether a patient suffers from a disease

Predicting whether a customer will churn or not

Predicting behavior – for example, whether a customer will file an
appeal or not

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml

In the next few sections, we will go through the following steps to achieve
our goal of creating a binary classification model to be used to run inference
queries:

1. Defining the business problem

2. Uploading and analyzing data

3. Creating the model

4. Running prediction queries against the model

Establishing the business problem

To build our binary classification problem, we will take a look at a banking
campaign issue. Banks spend a lot of money on marketing campaigns
targeted toward their customers so that they will subscribe to their products.
It is very important that banks build efficiency into their campaign, and this
can be done by learning the last campaign dataset and predicting future
campaign results. We will work on predicting whether a banking customer
will subscribe to a banking product offer of a term deposit.

Uploading and analyzing the data

We are going to work on a bank marketing dataset in this section. The data
is related to direct marketing campaigns of a Portuguese banking institution.
Imagine you are a marketing analyst and your goal is to increase the amount
of deposits by offering a term deposit to your customers. It is very
important that marketing campaigns target customers appropriately. You

will create a model using Redshift ML to predict whether a customer is
likely to accept the term deposit offer. This dataset is sourced from
https://archive.ics.uci.edu/ml/datasets/bank+marketing.

DATASET CITATION
[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the
Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22–31, June 2014

The classification goal is to predict whether the client will subscribe
(yes/no) to a term deposit (the y variable).

The dataset has columns such as age, job, marital status, education level,
and employment status.

Metadata about these columns can also be found at the UCI ML repository
website here: https://archive.ics.uci.edu/ml/datasets/bank+marketing.

As you can see from the preceding link, there are 20 independent variables
and 1 dependent variable (y). We can use any or all of these independent
variables as input to our CREATE MODEL statement to be able to predict the
outcome, y, which indicates whether the customer is likely to accept the
offer.

After successfully connecting to Redshift as an admin or database
developer, create the schema and load data into Amazon Redshift using the
following steps:

1. Navigate to Redshift query editor v2, and connect to the Serverless
endpoint and the dev database.

2. Rename the Untitled query editor by saving it as Chap6.

https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing

The following screenshot shows the serverless connection, the database set
to dev, and the query editor page saved as Chap6:

Figure 6.3 – Query Editor v2

3. Now, using the following line of code, create the schema. This schema
is where all the tables and data needed for this chapter will be created
and maintained:

Create schema chapter6_supervisedclassification;

You will see output like this, indicating that your schema is created:

Figure 6.4 – Schema created

The following code will create the bank_details_training table to store
data to train the model, and the bank_details_inference table to store data
to run the inference queries. Note that we have already split our input
dataset into these two datasets for you. All of the SQL commands used in
this chapter can be found here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql.

4. Run the following code from GitHub to create the training and inference
tables in Query Editor v2:

CREATE TABLE

chapter6_supervisedclassification.bank_details_training(

 age numeric, "job" varchar marital varchar, education

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql

varchar,

 "default" varchar, housing varchar, loan varchar,

 contact varchar, month varchar, day_of_week varchar,

 …,

 y boolean) ;

--create table to store data for running predictions

CREATE TABLE

chapter6_supervisedclassification.bank_details_inference(

 age numeric, "job" varchar marital varchar, education

varchar,

 "default" varchar, housing varchar, loan varchar,

 contact varchar, month varchar, day_of_week varchar,

 …,

 y boolean) ;

You will see output like this to verify that your tables have been created
successfully:

Figure 6.5 – Tables created successfully

Now that you have created the tables, run the commands in step 5 using
Query Editor v2 to load the data, using the S3 buckets provided.

5. Load the sample data into the tables created in step 4 by using the
following command, which can be found on GitHub. Note that we use

the COPY command to load this data from Amazon S3:

--load data into bank_details_inference

TRUNCATE

chapter6_supervisedclassification.bank_details_inference;

 COPY chapter6_supervisedclassification.bank_details_inference

from 's3://packt-serverless-ml-redshift/chapter06/bank-

marketing-data/inference-data/inference.csv' REGION 'eu-west-

1' IAM_ROLE default CSV IGNOREHEADER 1 delimiter ';';

-- load data into bank_details_training

TRUNCATE

chapter6_supervisedclassification.bank_details_training;

 COPY chapter6_supervisedclassification.bank_details_training

from 's3://packt-serverless-ml-redshift/chapter06/bank-

marketing-data/training-data/training.csv' REGION 'eu-west-1'

IAM_ROLE default CSV IGNOREHEADER 1 delimiter ';';

6. Analyze the customer term deposit subscription table by creating a
histogram chart. First, run the following command again using Query
Editor v2:

SELECT y, COUNT(*) Customer_Count FROM

chapter6_supervisedclassification.bank_details_training

GROUP BY y

;

You can see in the result set that 36548 customers did not choose the bank’s
offer and 4640 did accept. You can also use the chart feature in Query

Editor v2 to create a bar chart. Click on the Chart option found on the
right-hand side in the Result pane:

Figure 6.6 – The subscription results and the Chart option

You will get the following result after choosing Bar for Type, y for the X
value, and customer_count for the Y value:

Figure 6.7 – A chart of customer acceptance

Now that we have our data loaded, we can create our model.

Using XGBoost to train a binary
classification model

In this section, you will specify MODEL_TYPE and PROBLEM_TYPE to create a
binary classification model using the XGBoost algorithm. We will now
address the banking campaign problem. The goal of this model is to predict
whether a customer will subscribe to a term deposit or not.

We will set MODEL_TYPE as XGBoost and PROBLEM_TYPE as
BINARY_CLASSIFICATION. We will use the default IAM_ROLE. We also need to
specify the S3 bucket where the model artifacts will be stored and,
additionally, set MAX_RUNTIME to 3600 (in seconds).

The following is the code to create the model. You will find the complete
code along with all the SQL commands needed for the chapter at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/chapter6.sql:

DROP MODEL chapter6_supervisedclassification.banking_termdeposit;

CREATE MODEL

chapter6_supervisedclassification.banking_termdeposit

FROM (

SELECT

 age ,

 "job" ,

 marital ,

 education ,

 "default" ,

 housing ,

 loan ,

 contact ,

 month ,

 day_of_week ,

 duration,

 campaign ,

 pdays ,

 previous ,

 poutcome ,

 emp_var_rate ,

 cons_price_idx ,

 cons_conf_idx ,

 euribor3m ,

 nr_employed ,

 y

FROM

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/chapter6.sql

 chapter6_supervisedclassification.bank_details_training)

 TARGET y

FUNCTION predict_term_deposit

IAM_ROLE default

MODEL_TYPE XGBoost

PROBLEM_TYPE BINARY_CLASSIFICATION

SETTINGS (

 S3_BUCKET '<<your-S3-Bucket',

 MAX_RUNTIME 9600

)

;

By setting MODEL_TYPE to XGBoost and PROBLEM_TYPE to
BINARY_CLASSIFICATION, we guide Redshift ML to only search for the best
XGBoost model in this training run. If this is left as default, Redshift ML
checks whether other classification models can be applied to the dataset.

Since the SageMaker AutoPilot algorithm does not have to test other
model types or determine the problem type, the end result will be less
training time. In this example, SageMaker Autopilot takes care of selecting
the objective type, adjusting hyperparameters, and handling the data
preprocessing steps.

To check the status of the model, run the following command:

SHOW MODEL chapter6_supervisedclassification.banking_termdeposit;

You will get the following result:

Figure 6.8 – Showing the model output

From the preceding screenshot, we can see that the model is still under
training. Also, note that Redshift ML picks up the Model Type and
Problem Type parameter values from our CREATE MODEL statement. Other
parameters, such as the objective, hyperparameters, and preprocessing, are
still auto-handled by Redshift ML.

The predict_term_deposit parameter under Function Name is used to
generate predictions, which we will use in the next section.

Run the SHOW MODEL command again after some time to check whether
model training is complete. From the following screenshot, you can see that
Model State is READY and F1 has been selected as the objective for
model evaluation. The F1 score is 0.646200, or 64%. The closer this
number is to 1, the better the model score:

Figure 6.9 – Showing the model output

Let’s run the following query against our training data to validate the F1
score:

WITH infer_data

 AS (

 SELECT y as actual,

chapter6_supervisedclassification.predict_term_deposit(

 age , "job" , marital , education , "default"

, housing , loan , contact , month , day_of_week

, duration , campaign , pdays , previous , poutcome

, emp_var_rate , cons_price_idx , cons_conf_idx

, euribor3m , nr_employed

) AS predicted,

 CASE WHEN actual = predicted THEN 1::INT

 ELSE 0::INT END AS correct

 FROM chapter6_supervisedclassification.bank_details_training

),

 aggr_data AS (

 SELECT SUM(correct) as num_correct, COUNT(*) as total FROM

infer_data

)

 SELECT (num_correct::float/total::float) AS accuracy FROM

aggr_data;

You can see in the following output that our accuracy is very good at almost
94%:

Figure 6.10 – The accuracy results

Now that the model training is complete, we will use the function created to
run prediction queries.

Running predictions

Let us run some predictions on our inference dataset to see how many
customers are predicted to subscribe to the term deposit. Run the following
SQL statement in Query Editor v2:

WITH term_data AS (SELECT

chapter6_supervisedclassification.predict_term_deposit(age,"job"

,marital,education,"default",housing,loan,contact,month,day_of_we

ek,duration,campaign,pdays,previous,poutcome,emp_var_rate,cons_pr

ice_idx,cons_conf_idx,euribor3m,nr_employed) AS predicted

FROM chapter6_supervisedclassification.bank_details_inference)

SELECT

CASE WHEN predicted = 'Y' THEN 'Yes-will-do-a-term-deposit'

 WHEN predicted = 'N' THEN 'No-term-deposit'

 ELSE 'Neither' END as deposit_prediction,

COUNT(1) AS count

from term_data GROUP BY 1;

You should get the following output:

Figure 6.11 – Prediction results

We can see that 642 customers are predicted to accept the offer to subscribe
to the term deposit, and 3477 are predicted to not accept the offer.

Prediction probabilit ies

Amazon Redshift ML now provides the capability to get the probability of a
prediction for binary and multi-class classification problems. Note that in
the output of the SHOW MODEL command in Figure 6.9, an additional function
name has been created called predict_term_deposit_prob. Run the
following query to check the probability that married customers with
management jobs and between 35 and 45 years of age will accept the term
deposit offer:

SELECT

age,"job" ,marital ,

chapter6_supervisedclassification.predict_term_deposit_prob(

age,"job"

,marital,education,"default",housing,loan,contact,month,day_of_we

ek,duration,campaign,pdays,previous,poutcome,emp_var_rate,cons_pr

ice_idx,cons_conf_idx,euribor3m,nr_employed) AS predicted

FROM chapter6_supervisedclassification.bank_details_inference

where marital = 'married'

 and "job" = 'management'

 and age between 35 and 40;

You will see the following results:

Figure 6.12 – Probability results

You can see in the first row a 0.99985629 probability of a false prediction
and only a 0.00014372 probability of a true prediction.

You can also modify the preceding query to see the probability of the
customers that are predicted to accept the term deposit offer. Run the
following SQL command in Query Editor v2:

SELECT age, "job", marital, predicted.labels[0],

predicted.probabilities[0]

from

 (select

age,"job" ,marital ,

chapter6_supervisedclassification.predict_term_deposit_prob(

age,"job"

,marital,education,"default",housing,loan,contact,month,day_of_we

ek,duration,campaign,pdays,previous,poutcome,emp_var_rate,cons_pr

ice_idx,cons_conf_idx,euribor3m,nr_employed) AS predicted

FROM chapter6_supervisedclassification.bank_details_inference

where marital = 'married'

 and "job" = 'management'

 and age between 35 and 40) t1

where predicted.labels[0] = 't';

You will see similar results as follows:

Figure 6.13 – The probability results for customers accepting the term offer

In Chapter 5, you learned how to determine feature importance by running
an explainability report. Run the following query to see which inputs
contributed most to the model prediction:

select

json_table.report.explanations.kernel_shap.label0.global_shap_val

ues from

 (select

explain_model('chapter6_supervisedclassification.banking_termdepo

sit') as report) as json_table;

Take the result and copy it to the editor so that it is easier to read, as shown
in Figure 6.14:

Figure 6.14 – The explainability report

This shows that pdays has the most importance and that poutcome has the
least.

Now that you have built a binary classification model, let us move on and
try building a multi-class classification model.

Training a multi-class classification
model using the Linear Learner model
type
In this section, you will learn how to build a multi-class classification
model in Amazon Redshift ML using the linear learner algorithm.

To do this, we will use a customer segmentation dataset from Kaggle:
https://www.kaggle.com/datasets/vetrirah/customer.

You will use this dataset to train a model to classify customers into one of
four segments (A, B, C, or D). By segmenting customers, you can better
understand the customer and do targeted marketing to customers, with
product offerings that are relevant to them.

https://www.kaggle.com/datasets/vetrirah/customer

Our data has already been split into training and testing sets and is stored in
the following S3 locations:

s3://packt-serverless-ml-

redshift/chapter06/segmentation/train.csv

s3://packt-serverless-ml-

redshift/chapter06/segmentation/test.csv

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift as follows:

1. Navigate to Redshift query editor v2, and connect to the Serverless
endpoint and the dev database.

2. Use the same schema and query editor page you created for the binary
classification exercise (see the Uploading and analyzing the data
section).

Create the train and test tables and load the data using the following SQL
commands in Query Editor v2. These SQL commands can be found at

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql:

CREATE TABLE

chapter6_supervisedclassification.cust_segmentation_train (

 id numeric,

 gender varchar,

 ever_married varchar,

 age numeric,

 graduated varchar,

 profession varchar,

 work_experience numeric,

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql

 spending_score varchar,

 family_size numeric,

 var_1 varchar,

 segmentation varchar

)

DISTSTYLE AUTO;

COPY chapter6_supervisedclassification.cust_segmentation_train

FROM 's3://packt-serverless-ml-redshift/chapter06/Train.csv'

IAM_ROLE DEFAULT FORMAT AS CSV DELIMITER ',' QUOTE '"'

IGNOREHEADER 1 REGION AS 'eu-west-1';

CREATE TABLE

chapter6_supervisedclassification.cust_segmentation_test (

 id numeric,

 gender varchar,

 ever_married varchar,

 age numeric,

 graduated varchar,

 profession varchar,

 work_experience numeric,

 spending_score varchar,

 family_size numeric,

 var_1 varchar

)

DISTSTYLE AUTO;

COPY chapter6_supervisedclassification.cust_segmentation_test

FROM 's3://packt-serverless-ml-redshift/chapter06/Test.csv'

IAM_ROLE DEFAULT FORMAT AS CSV DELIMITER ',' QUOTE '"'

IGNOREHEADER 1 REGION AS 'eu-west-1';

Now that the data has loaded, let’s do some analysis of our training data.

3. Analyze the training data by executing the following SQL command:

select segmentation, count(*) from

chapter6_supervisedclassification.cust_segmentation_train

group by 1;

You should get the following output:

Figure 6.15 – Segmentation

Our training dataset has a total of 8,068 customer records. From this
sample, we can see that segments C, B, and A are very similar and that
more customers are in segment D.

We will use the input from the training dataset to predict the customer
segment, using the linear learner algorithm.

Using Linear Learner to predict the
customer segment

Linear learner is a supervised learning algorithm and one of the model
types you can use to solve classification or regression problems.

For multi-class classification problems, we have more than two labels (or
targets) that we will try to predict, compared to exactly two labels for binary
classification problems. We will show you how to use linear learner to solve
regression problems in Chapter 7.

With linear learner, you can achieve a significant increase in speed
compared to traditional hyperparameter optimization techniques, making it
very convenient.

We will provide a training set with data that contains our input or
observations about the data, and the label that represents the value we want
to predict. We can optionally provide certain combinations of preprocessors
to certain sets of columns.

In this section, you will apply user guidance techniques by providing
MODEL_TYPE, PROBLEM_TYPE, and OBJECTIVE to create a multi-class
classification model using the linear learner algorithm. The goal of this
model is to predict the segment for each customer.

We will set MODEL_TYPE as LINEAR_LEARNER and PROBLEM_TYPE as
MULTICLASS_CLASSIFICATION. We will leave other options as default.

Let us execute the following code in Query Editor v2 to train the model:

CREATE MODEL

chapter6_supervisedclassification.cust_segmentation_model_ll

FROM (

SELECT

 id, gender, ever_married, age, graduated,profession,

 work_experience, spending_score,family_size,

 var_1,segmentation

FROM chapter6_supervisedclassification.cust_segmentation_train

)

TARGET segmentation

FUNCTION predict_cust_segment_ll IAM_ROLE default

MODEL_TYPE LINEAR_LEARNER

PROBLEM_TYPE MULTICLASS_CLASSIFICATION

OBJECTIVE 'accuracy'

SETTINGS (

 S3_BUCKET '<<your-s3-bucket>>',

 S3_GARBAGE_COLLECT OFF,

 MAX_RUNTIME 9600

);

To check the status of the model, run the following command in Query
Editor v2:

SHOW MODEL

chapter6_supervisedclassification.cust_segmentation_model_ll;

You should get the following output:

Figure 6.16 – Showing the model output

You can see that the model is now in the READY state and that Redshift
ML picks up Model Type and Problem Type parameter values from our

CREATE MODEL statement.

Now that the model is trained, it is time to evaluate its quality.

Evaluating the model quality

When you issue the CREATE MODEL command, Amazon SageMaker will
automatically divide your data into testing and training in the background
so that it can determine the accuracy of the model. If you look at the
validation:multiclass_accuracy key from the SHOW MODEL output, you will
see a value of 0.535028, which means our model can correctly pick the
segment 53% of the time. Ideally, we prefer a value closer to 1.

We can also run a validation query to check our accuracy rates. In the
following query, note that we select the actual segmentation, and then we
use the function that was generated by our CREATE MODEL command to get
the predicted segmentation to do the comparison:

 select

 cast(sum(t1.match)as decimal(7,2)) as predicted_matches

,cast(sum(t1.nonmatch) as decimal(7,2)) as predicted_non_matches

,cast(sum(t1.match + t1.nonmatch) as decimal(7,2)) as

total_predictions

,predicted_matches / total_predictions as pct_accuracy

from

(SELECT

 id,

 gender,

 ever_married,

 age,

 graduated,

 profession,

 work_experience,

 spending_score,

 family_size,

 var_1,

 segmentation as actual_segmentation,

 chapter6_supervisedclassification.predict_cust_segment_ll

(id,gender,ever_married,age,graduated,profession,work_experience,

spending_score,family_size,var_1) as predicted_segmentation,

 case when actual_segmentation = predicted_segmentation then 1

 else 0 end as match,

 case when actual_segmentation <> predicted_segmentation then 1

 else 0 end as nonmatch

 FROM

chapter6_supervisedclassification.cust_segmentation_train

) t1;

We get the following output:

Figure 6.17 – The model accuracy

This output shows that we are very close to the score of .535028 when we
compare the number of times the model correctly predicted the segment
against the total number of input records.

Now that we have checked the model accuracy, we are ready to run
prediction queries against the test dataset.

Running prediction queries

Now that we have our model and have done validation, we can run our
prediction query against our test set so that we can segment our prospective

customers, based on customer IDs. You can see that we now use our
function against the test table to get the predicted segment:

SELECT

id,

chapter6_supervisedclassification.predict_cust_segment_ll

(id,gender,ever_married,age,graduated,profession,work_experience,

spending_score,family_size,var_1) as segmentation

FROM chapter6_supervisedclassification.cust_segmentation_test;

The first 10 customers are shown here:

Figure 6.18 – The predicted segment

Let’s see how the new prospective customers are spread across the various
segments:

SELECT

 chapter6_supervisedclassification.predict_cust_segment_ll

 (id,gender,ever_married,age,graduated,profession,work_experie

nce,spending_score,family_size,var_1) as segmentation,

 count(*)

 FROM chapter6_supervisedclassification.cust_segmentation_test

 group by 1;

We can see here how many prospective customers are in each segment:

Figure 6.19 – The customer count by segment

Now that you have this information, your marketing team is ready to target
their efforts on these prospective customers.

Let’s now take a look at some other options you can use to solve this multi-
class classification problem.

Exploring other CREATE MODEL options

We can also create this model in a couple of different ways, which we will
explore in the following sections. It is important to understand the different
options available so that you can experiment and choose the approach that
gives you the best model.

In the first example, we will not provide any user guidance, such as
specifying MODEL_TYPE, PROBLEM_TYPE, or OBJECTIVE. Use this approach if
you are new to ML and want to let SageMaker Autopilot determine this for
you.

Then, in the next example, you can see how you can provide PROBLEM_TYPE
and OBJECTIVE. As a more experienced user of ML, you should now

recognize which PROBLEM_TYPE and OBJECTIVE instances are best for your
use case. When you provide these inputs, it will speed up the model training
process, since SageMaker Autopilot will only train using the provided user
guidance.

Creating a model with no user guidance
In this approach, we let SageMaker Autopilot choose MODEL_TYPE,
PROBLEM_TYPE, and OBJECTIVE:

CREATE MODEL

chapter6_supervisedclassification.cust_segmentation_model

FROM (

SELECT

 id,

 gender,

 ever_married,

 age,

 graduated,

 profession,

 work_experience,

 spending_score,

 family_size,

 var_1,

 segmentation

FROM chapter6_supervisedclassification.cust_segmentation_train

)

TARGET segmentation

FUNCTION predict_cust_segment IAM_ROLE default

SETTINGS (

 S3_BUCKET '<<your S3 Bucket>>',

 S3_GARBAGE_COLLECT OFF,

 MAX_RUNTIME 9600

);

Note that we have only provided the basic settings. We did not specify
MODEL_TYPE, PROBLEM_TYPE, or OBJECTIVE. Amazon Redshift ML and
SageMaker will automatically figure out that this is a multi-class

classification problem and use the best model type. As an additional
exercise, run this CREATE MODEL command, and then run the SHOW MODEL
command. It will show you the MODEL_TYPE parameter that Amazon
SageMaker used to train the model.

Creating a model with some user guidance
In this example, we will provide PROBLEM_TYPE and OBJECTIVE, but we will
let Amazon SageMaker determine MODEL_TYPE:

CREATE MODEL

chapter6_supervisedclassification.cust_segmentation_model_ug

FROM (

SELECT

 id,

 gender,

 ever_married,

 age,

 graduated,

 profession,

 work_experience,

 spending_score,

 family_size,

 var_1,

 segmentation

FROM chapter6_supervisedclassification.cust_segmentation_train

)

TARGET segmentation

FUNCTION predict_cust_segment_ug IAM_ROLE default

PROBLEM_TYPE MULTICLASS_CLASSIFICATION

OBJECTIVE 'accuracy'

SETTINGS (

 S3_BUCKET '<<your S3 Bucket>>',

 S3_GARBAGE_COLLECT OFF,

 MAX_RUNTIME 9600

);

In this example, we let Amazon Redshift ML and Amazon SageMaker
determine MODEL_TYPE, and we pass in PROBLEM_TYPE and OBJECTIVE. When
you have some free time, experiment with the different methods of creating
the models, and note the differences you see in the time it takes to train the
model, and also compare the accuracy and other outputs of the SHOW MODEL
command.

You can also create multi-class classification models using XGBoost, which
we will cover in Chapter 10.

Summary
In this chapter, we discussed classification models in detail and looked at
their common use cases. We also explained the CREATE MODEL syntax for
classification models, where you provide guidance to train a model by
supplying the model type and objective.

You learned how to do binary classification and multi-class classification
with Amazon Redshift ML and how to use the XGBoost and linear learner
algorithms. We also showed you how to check the status of your models,
validate them for accuracy, and write SQL queries to run predictions on
your test dataset.

In the next chapter, we will show you how to build regression models using
Amazon Redshift ML.

7

Building Regression Models
In the previous chapter, we learned about classification models. In this
chapter, we will learn about building linear regression models where we
predict numeric variables. Unlike classification models, linear regression
models are used to predict a continuous numeric value. Similar to the
previous chapter, here also you will learn about various methods that
Redshift provides for creating linear regression models.

This chapter will provide several detailed examples of business problems
that can be solved with these modeling techniques. In this chapter, we will
walk through how you can try different algorithms to get the best regression
model.

By the end of this chapter, you will be in a position to identify whether a
business problem is a linear regression or not and then be able to identify
the right method that Redshift provides to train and build the model.

In this chapter, we will go through the following main topics:

Introducing regression algorithms

Creating a simple regression model using the XGBoost algorithm

Creating multi-input regression models

Technical requirements

This chapter requires a web browser and access to the following:

AWS account

Amazon Redshift Serverless endpoint

Amazon Redshift Query Editor v2

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter7/chapter7.sql

Introducing regression algorithms
Regression models are used where you are trying to predict a numeric
outcome such as what price an item will sell for. The outcome variable is
your target and your input variables are used to determine the relationship
between the variables so that you can predict the unknown target on sets of
data without the target variable.

You can have a single input variable, also known as simple linear
regression. For example, years of experience and salary usually have a
relationship.

Multiple linear regression is when you have multiple input variables. For
example, predicting the selling price of homes in a particular zip code by
using the relationship between the target (price) and various inputs such as
square footage, number of bedrooms, pool, basement, lot size, and year
built.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter7/chapter7.sql

A good linear regression model has a small amount of vertical distance
between the line and the data points. Refer to the following figure:

Figure 7.1 – Linear regression line

Common use cases where regression models are useful are as follows:

Price and revenue prediction

Predicting customer lifetime value

Predicting the weather

Measuring the effectiveness of marketing campaigns

This chapter will show you how to build regression models in Amazon
Redshift ML using the XGBoost and Linear Learner algorithms, which you
used in Chapter 6. As you will see, you can use the same algorithms on
different machine learning problems.

We have looked at the regression problem; now let’s look at the Redshift
CREATE MODEL command to create a regression model.

Redshift’s CREATE MODEL with user
guidance

When using the CREATE MODEL command in Redshift, the system will
automatically search for the best combination of preprocessing and model
for your specific dataset. However, in some cases, you may want additional
control over the model creation process or to incorporate domain-specific
knowledge.

Redshift offers flexibility to guide the CREATE MODEL process so the time
taken by the AutoML job is reduced.

We are going to explore the model type and problem type parameters of the
CREATE MODEL statement in this chapter. As part of CREATE MODEL with user
guidance, you also have the option of setting a preprocessor, but we will
leave that topic for Chapter 10.

When you are guiding the AutoML job, as a machine learning model
creator, you are going to decide what algorithm to use and what problem
type to address. Redshift ML still performs the feature engineering of
independent variables behind the scenes – for example, out of 20 features,
Redshift ML will automatically identify the categorical variables and
numeric variables and create a one-hot-encoded value or standardization of
numerical variables where applicable, along with various other tasks
required to complete the model training.

In summary, you are letting Redshift ML handle the bulk of data
preparation tasks for machine learning. As a model creator, you have the
option to specify the algorithm and problem type to be used in the CREATE
MODEL statement, which has the benefit of reduced training time, since

SageMaker does not need to spend time determining which algorithm or
problem type to use.

Now that we have learned what CREATE MODEL with user guidance is, let’s
start creating a simple regression model.

Creating a simple linear regression
model using XGBoost
To build our simple linear regression problem, we are going to take a look
at a dataset that includes predicting weight based on height. This dataset has
only one independent variable, which is height in inches, and is used to
predict weight in pounds. Since there is only one independent variable, we
call this the simple linear regression model.

In this section, we will upload the data, analyze it, prepare it for training the
model, and then lastly, we will create the model and run prediction queries
using the function created by the model.

Uploading and analyzing the data

We are going to work on a height and weight dataset in this section.

The dataset contains 25,000 synthetic records of human heights and weights
of 18-year-old participants. This data was generated based on a 1993
Growth Survey, which was conducted on 25,000 children from their birth to
18 years of age. The participants were recruited from Maternal and Child
Health Centers (MCHCs) and schools, and the data collected was used to

develop Hong Kong’s current growth charts for weight, height, weight-for-
age, weight-for-height, and body mass index (BMI).

More details about this dataset can be found here:
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_Heigh
tsWeights.

DATASET CITATION
Hung-Kwan So, Edmund AS Nelson, Albert M Li, Eric MC Wong, Joseph TF Lau, Georgia S
Guldan, Kwok-Hang Mak, Youfa Wang, Tai-Fai Fok, and Rita YT Sung. (2008) Secular
changes in height, weight, and body mass index in Hong Kong Children. BMC Public
Health. 2008; 8: 320. doi: 10.1186/1471-2458-8-320. PMCID: PMC2572616

Leung SS, Lau JT, Tse LY, Oppenheimer SJ. Weight-for-age and weight-for-height
references for Hong Kong children from birth to 18 years. J Paediatr Child Health.
1996;32:103–109. doi: 10.1111/j.1440-1754.1996.tb00904.x.

Leung SS, Lau JT, Xu YY, Tse LY, Huen KF, Wong GW, Law WY, Yeung VT, Yeung WK, et
al. Secular changes in standing height, sitting height and sexual maturation of Chinese–the
Hong Kong Growth Study, 1993. Ann Hum Biol. 1996;23:297–306. doi:
10.1080/03014469600004532.

In the following subsections, we will discuss the prediction goals we are
trying to achieve using this dataset and then analyze the data.

Prediction goal
The goal is to predict the weight of children as a numeric value based on
supplied height as a numeric value.

The dataset has the following columns:

Column Description

Index Sequential number

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights

Height in Inches Height of a child as a numerical value

Weight in Pounds Weight of a child as a numerical value

Table 7.1 – Data definition

Analyzing the data
After successfully connecting to Redshift as an admin or database
developer, create the schema and load data into Amazon Redshift as
follows:

1. Navigate to Redshift query editor v2 and connect to the Serverless
endpoint and then the dev database.

2. Name the untitled query editor by saving it as Chapter7.

The following screenshot shows a serverless connection, the database set to
dev, and the Redshift query editor page saved as Chapter7:

Figure 7.2 – Connecting to the Serverless endpoint

3. Create the schema as follows:

create schema chapter7_RegressionModel;

4. Create a table using the following code:

--create table to load data

DROP TABLE chapter7_RegressionModel.height_weight;

CREATE TABLE chapter7_RegressionModel.height_weight

(

 Id integer,

 HeightInches decimal(9,2),

 weightPounds decimal(9,2)

)

;

5. Load the sample data by using the following command:

TRUNCATE chapter7_RegressionModel.height_weight;

COPY chapter7_RegressionModel.height_weight

FROM 's3://packt-serverless-ml-

redshift/chapter07/heightweight/HeightWeight.csv'

IAM_ROLE default

CSV

IGNOREHEADER 1

REGION AS 'eu-west-1';

6. Analyze the height and weight dataset table by creating a histogram
chart.

7. Use the Query Editor v2 Chart feature to create a graph. First, run the
following command and then click on the Chart option found on the
right-hand side in the Results pane:

SELECT * FROM

chapter7_RegressionModel.height_weight

ORDER BY 2,3;

To generate the following chart, you need to add two traces to your chart.
By default, the chart is loaded with one trace, so you need to add one
additional trace. You can add it by clicking on the + Trace button.

The following chart shows both variables. For trace 1, select heightinches
on the y axis, leaving the x axis empty. For trace 2, select weightpounds on
the y axis, leaving the x axis empty. The resulting chart should look like
this:

Figure 7.3 – Weights and heights

As you can see, there is a slight upward trend in weights along with heights.

Now that we have analyzed our dataset, we will split it into training and
validation sets. The training set will be used to train our model and the
validation set will be used to evaluate the model’s accuracy.

Splitt ing data into training and validation
sets

Since we have only one dataset, let’s write a query that splits data into two
logical sets: training and validation.

To train the model, let’s use the syntax where id%8 is not equal to 0:

SELECT * FROM

chapter7_RegressionModel.height_weight Where id%8!=0;

To validate the model, let’s use where id%8 is equal to 0:

SELECT * FROM

chapter7_RegressionModel.height_weight Where id%8=0;

We have analyzed and prepared our input data, now let’s create a machine
learning model.

Creating a simple linear regression
model

In this section, you will use CREATE MODEL with user guidance to create a
simple linear regression model using the XGBoost algorithm. We will
address the weight prediction problem by training a machine learning
model. The goal of this model is to predict a weight based on a given
height.

We set MODEL_TYPE as xgboost and PROBLEM_TYPE as regression. We leave
other options as default:

DROP MODEL chapter7_RegressionModel.predict_weight;

CREATE MODEL chapter7_RegressionModel.predict_weight

FROM (select heightinches, cast(round(weightpounds,0) as integer)

weightpounds from chapter7_RegressionModel.height_weight where

id%8!=0)

TARGET weightpounds

FUNCTION predict_weight

IAM_ROLE default

MODEL_TYPE xgboost

PROBLEM_TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3_bucket '<<your-S3-bucket>>',

 s3_garbage_collect off,

 max_runtime 3600);

Let’s take a look at the options we provided in the CREATE MODEL statement
and discuss how they affect the actions taken by Amazon SageMaker

In the CREATE MODEL statement, we are guiding Redshift ML to use XGBoost
as an algorithm by setting MODEL_TYPE. The Amazon SageMaker Autopilot
job will not train the model using other supported algorithms – for example,
Linear Learner or multilayer perceptron (MLP). When this option is left
as default, Amazon SageMaker will train the model using all the algorithms
supported by Autopilot.

Next, when we set PROBLEM_TYPE to regression, we are guiding Redshift
ML to search for a model to solve a regression problem type.

We set OBJECTIVE to mse (mean squared error), which is commonly used to
evaluate the performance of a regression model. It is a measure of the
average of the squared differences between the predicted values and the
actual values.

With these three guiding options, we are creating boundaries for Amazon
SageMaker Autopilot. The end result would be less training time bundled
with other benefits of the Autopilot algorithm – for example, adjusting
hyperparameters and data preprocessing steps, which are all auto-handled
by Amazon SageMaker Autopilot.

To check the status of the model, run the following command:

SHOW MODEL chapter7_RegressionModel.predict_weight;

The following screenshot shows the output of the SHOW MODEL command:

Figure 7.4 – SHOW MODEL output

The model is still under training, but you will notice that Redshift ML is
picking up Model Type, Problem Type, and Objective parameter values
from our CREATE MODEL statement.

The Function Name parameter, predict_weight, is used to generate
predictions and is used in the SELECT statement, which we will cover in the
next section.

Run the SHOW MODEL command again after some time to check whether the
model training is complete or not. From the following screenshot, you can
see that model training has finished and MSE has been selected as the
objective for model evaluation. This is auto-selected by the Redshift ML
and is the correct evaluation method for linear regression models:

Figure 7.5 – SHOW MODEL output – model ready state

We have trained and created the model; in the next step, we will generate
the predictions.

Running predictions

Since our model has been successfully trained, let’s run some predictions
against unseen datasets.

Run the following query to find records where the model is exactly
predicting weight in pounds for a given height in inches where id%8=0. By
using WHERE id%8=0, we are looking at ~20% of our dataset. These are
records that were not included in model training. If you recall, in the CREATE
MODEL statement, we specified WHERE id%8 !=0:

SELECT heightinches,

CAST(chapter7_RegressionModel.predict_weight(CAST(ROUND(heightinc

hes,0) as integer)) as INTEGER) as Predicted_Weightpounds,

 CAST(ROUND(weightpounds,0) as INTEGER) Original_Weightpounds ,

 Predicted_Weightpounds - Original_Weightpounds as Difference

 FROM chapter7_RegressionModel.height_weight WHERE id%8=0

 AND Predicted_Weightpounds - Original_Weightpounds = 0;

Here is the output for it:

Figure 7.6 – Showing predicted weight results

Now, let’s check the MSE and root mean square error (RMSE):

 SELECT

 ROUND(AVG(POWER((Original_Weightpounds -

Predicted_Weightpounds),2)),2) mse

 , ROUND(SQRT(AVG(POWER((Original_Weightpounds -

Predicted_Weightpounds),2))),2) rmse

FROM

 (select heightinches,

cast(chapter7_RegressionModel.predict_weight(cast(round(heightinc

hes,0) as integer)) as integer) as Predicted_Weightpounds,

 cast(round(weightpounds,0) as integer) Original_Weightpounds ,

 Predicted_Weightpounds - Original_Weightpounds as Difference

 from chapter7_RegressionModel.height_weight where id%8=0

);

Here is the output:

Figure 7.7 – MSE and RMSE values

Our MSE value is high; it represents data that may have outliers or for
which we do not have enough variables. For example, adding age and
gender may improve the prediction score.

Let’s compare predicted scores and original scores in a line chart:

 select heightinches,

cast(chapter7_RegressionModel.predict_weight(cast(round(heightinc

hes,0) as integer)) as integer) as Predicted_Weightpounds,

 cast(round(weightpounds,0) as integer) Original_Weightpounds ,

 Predicted_Weightpounds - Original_Weightpounds as Difference

 from chapter7_RegressionModel.height_weight where id%8=0;

Once a response is returned, click on the Chart option found on the right-
hand side in the Query Editor, add a trace for the line, and select
Predicted_Weightpounds. Add another trace for the line chart and select

Original_Weightpounds, then add a third trace, but this time, select Bar
graph and add a Difference column.

In the following chart, you will notice that the predicted scores are
following the original scores. The difference is shown at the bottom of the
graph, which gives information about the variance or error:

Figure 7.8 – Predicted versus original weights

We have learned about how a simple regression model is created using
Redshift ML. Now let’s learn about the multi-input regression model.

Creating multi-input regression models

In this exercise, you will learn how to build a regression model using
multiple input variables in Amazon Redshift ML.

In this use case, we will use a dataset containing the sales history of online
sporting events. A sporting event management company wants to review
the data for the latest football and baseball seasons to figure out which
games underperformed for revenue, and what the revenue projections look
like for the season.

Your task is to build and train a model to predict revenue for upcoming
events in order to proactively take action to increase ticket sales to ensure
revenue numbers meet the company’s targets.

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift.

Navigate to Redshift query editor v2 and connect to the Serverless
endpoint and the dev database.

Use the same schema and query editor page you created for the previous
exercise.

Create your input table and load the data using the following SQL
commands:

CREATE TABLE chapter7_RegressionModel.sporting_event_ticket_info

(

ticket_id double precision ,

event_id bigint,

sport character varying(500),

event_date_time timestamp without time zone,

home_team character varying(500),

away_team character varying(500),

location character varying(500),

city character varying(500),

seat_level bigint,

seat_section bigint,

seat_row character varying(500),

seat bigint ENCODE az64,

list_ticket_price double precision,

final_ticket_price double precision ,

ticketholder character varying(500)

)

DISTSTYLE AUTO;

COPY chapter7_RegressionModel.sporting_event_ticket_info

FROM 's3://packt-serverless-ml-redshift/chapter07/ticket_info'

IAM_ROLE default

FORMAT AS CSV DELIMITER ',' QUOTE '"'

REGION AS 'eu-west-1';

Let’s analyze our dataset and get a historical trend of ticket sales over the
last few months:

Select extract(month from event_date_time) as month,

sum(cast (final_ticket_price as decimal(8,2))) as ticket_revenue

From chapter7_RegressionModel.sporting_event_ticket_info

where event_date_time < '2019-10-27'

group by 1

order by 1;

The output is as follows:

Figure 7.9 – Ticket revenue by month

We can see that sales are spiky and fall off dramatically in months 7 and 8.
Let’s create a model so we can predict teams that will have lower ticket
revenue. Before creating our model, we need to split the dataset into
training, validation, and testing datasets, respectively.

1. Execute the following code in Query Editor v2 to create the training
table:

CREATE TABLE

chapter7_RegressionModel.sporting_event_ticket_info_training (

 ticket_id double precision ,

 event_id bigint,

 sport character varying(500),

 event_date_time timestamp without time zone,

 home_team character varying(500),

 away_team character varying(500),

 location character varying(500),

 city character varying(500),

 seat_level bigint,

 seat_section bigint,

 seat_row character varying(500),

 seat bigint ENCODE az64,

 list_ticket_price double precision,

 final_ticket_price double precision ,

 ticketholder character varying(500)

)

DISTSTYLE AUTO;

2. The next step is to insert ~70% of the data into the training table:

--insert ~70% of data into training_set

insert

into chapter7_RegressionModel.sporting_event_ticket_info_tra

ining

(ticket_id ,event_id ,sport , event_date_time, home_team ,

away_team , location , city , seat_level, seat_section,

 seat_row , seat, list_ticket_price, final_ticket_price,

ticketholder)

 select

 ticket_id ,event_id ,sport , event_date_time, home_team ,

away_team , location , city , seat_level, seat_section,

 seat_row , seat, list_ticket_price, final_ticket_price,

ticketholder

 from chapter7_RegressionModel.sporting_event_ticket_info

 where event_date_time < '2019-10-20';

3. Next, you will create the validation table:

CREATE TABLE

chapter7_RegressionModel.sporting_event_ticket_info_validation

(

 ticket_id double precision ,

 event_id bigint,

 sport character varying(500),

 event_date_time timestamp without time zone,

 home_team character varying(500),

 away_team character varying(500),

 location character varying(500),

 city character varying(500),

 seat_level bigint,

 seat_section bigint,

 seat_row character varying(500),

 seat bigint ENCODE az64,

 list_ticket_price double precision,

 final_ticket_price double precision ,

 ticketholder character varying(500)

)

DISTSTYLE AUTO;

4. Next, insert ~10% of the data into the validation table:

insert

into chapter7_RegressionModel.sporting_event_ticket_info_vali

dation

(ticket_id ,event_id ,sport , event_date_time, home_team ,

away_team , location , city , seat_level, seat_section,

 seat_row , seat, list_ticket_price, final_ticket_price,

ticketholder)

 select

 ticket_id ,event_id ,sport , event_date_time, home_team ,

away_team , location , city , seat_level, seat_section,

 seat_row , seat, list_ticket_price, final_ticket_price,

ticketholder

 from chapter7_RegressionModel.sporting_event_ticket_info

 where event_date_time between '2019-10-20' and '2019-10-22' ;

5. Finally, create the testing table:

CREATE TABLE

chapter7_RegressionModel.sporting_event_ticket_info_testing (

 ticket_id double precision ,

 event_id bigint,

 sport character varying(500),

 event_date_time timestamp without time zone,

 home_team character varying(500),

 away_team character varying(500),

 location character varying(500),

 city character varying(500),

 seat_level bigint,

 seat_section bigint,

 seat_row character varying(500),

 seat bigint ENCODE az64,

 list_ticket_price double precision,

 final_ticket_price double precision ,

 ticketholder character varying(500)

)

DISTSTYLE AUTO;

6. Next, insert ~20% of the data into the testing table:

insert

into chapter7_RegressionModel.sporting_event_ticket_info_tes

ting

(ticket_id ,event_id ,sport , event_date_time, home_team ,

away_team , location , city , seat_level, seat_section,

 seat_row , seat, list_ticket_price, final_ticket_price,

ticketholder)

select

 ticket_id ,event_id ,sport , event_date_time, home_team ,

away_team , location , city , seat_level, seat_section,

 seat_row , seat, list_ticket_price, final_ticket_price,

ticketholder

 from chapter7_RegressionModel.sporting_event_ticket_info

 where event_date_time > '2019-10-22'

 ;

We have prepared the dataset to train and test the ML model; now let’s
create a regression model using the Linear Learner algorithm.

Linear Learner algorithm

As we saw in Chapter 6, you can use the Linear Learner model type to
solve classification or regression problems. This is a supervised learning
algorithm. For regression problems, we are trying to predict a numerical
outcome and, in this exercise, we will be using multiple inputs; SageMaker
will choose the best modes based on continuous objectives using MSE.

We provide a training set with data that contains our inputs or observations
about the data and the label, which represents the value we want to predict.
Our goal is to accurately predict future ticket sales.

We set MODEL_TYPE as LINEAR_LEARNER, PROBLEM_TYPE as regression, and
OBJECTIVE as mse. We leave out other options as default.

Execute this code in Query Editor v2 to train the model. Be sure to replace
the following S3 bucket using the bucket you created previously. You will
need to input the S3 bucket you created previously to store the Redshift ML
artifacts.

Run the following command to train the regression model:

CREATE MODEL

chapter7_RegressionModel.predict_ticket_price_linlearn from

chapter7_RegressionModel.sporting_event_ticket_info_training

TARGET final_ticket_price

FUNCTION predict_ticket_price_linlearn

IAM_ROLE default

MODEL_TYPE LINEAR_LEARNER

PROBLEM_TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3_bucket '<<your-S3-Bucket>>',

s3_garbage_collect off,

max_runtime 9600);

Once the model state is READY, you are ready to proceed. To check the
status of the model, run the following command:

SHOW MODEL

chapter7_RegressionModel.predict_ticket_price_linlearn;

Note the MSE score you see; it will be similar to the output in Figure 7.10:

Figure 7.10 – SHOW MODEL output

We have now created the ML model; let’s validate its performance.

Understanding model evaluation

You measure the model performance of regression problems through the
MSE and/or RMSE. This is the distance between the predicted numeric
target and the actual numeric answer, also known as ground truth. In our
SHOW MODEL output, we see the MSE. We can also calculate this ourselves by
squaring the differences between the actual and predicted values and then

finding the average. Then, take the square root of MSE to get the RMSE.
The lower the MSE and RMSE scores, the better.

As we see from the SHOW MODEL output, our MSE score is over 681 – let’s
check this and the RMSE score against our validation by running the
following SQL command:

SELECT

 ROUND(AVG(POWER((actual_price_revenue -

predicted_price_revenue),2)),2) mse

 , ROUND(SQRT(AVG(POWER((actual_price_revenue -

predicted_price_revenue),2))),2) rmse

FROM

 (select home_team,

chapter7_RegressionModel.predict_ticket_price_linlearn

(ticket_id, event_id, sport, event_date_time, home_team,

away_team,

Location, city, seat_level, seat_section, seat_row, seat,

list_ticket_price ,ticketholder) as predicted_price_revenue,

 final_ticket_price as actual_price_revenue

From

chapter7_RegressionModel.sporting_event_ticket_info_validation

);

This is the output of the query:

Figure 7.11 – MSE and RMSE values

While the MSE scores seem a little high, we can also run a validation query
to check our accuracy rates. You will notice in the following query that it
uses the function that was generated by our CREATE MODEL command to get
the predicted price revenue for us to compare to the actual price revenue:

Select home_team,

sum(cast(chapter7_RegressionModel.predict_ticket_price_linlearn

(ticket_id, event_id, sport,

event_date_time, home_team, away_team,

Location, city, seat_level, seat_section, seat_row, seat,

list_ticket_price ,ticketholder) as decimal(8,2))) as

predicted_price_revenue,

sum(cast (final_ticket_price as decimal(8,2))) as

actual_price_revenue,

(predicted_price_revenue - actual_price_revenue) as diff,

abs((predicted_price_revenue -

actual_price_revenue)/actual_price_revenue) * 100 as pct_diff

From

chapter7_RegressionModel.sporting_event_ticket_info_validation

group by 1

order by 5 desc ;

This is the output of the query:

Figure 7.12 – Predicted price versus actual price

Looking at the results, the model is not performing as well as we would
like. You can run the validation query against the training data and see that

the model is not performing very well on the training data either – this is
called underfitting.

One solution would be to add more features, but we have already used all
the available features.

Let’s try running the model again, but this time, we will use the auto option
and let SageMaker pick the algorithm:

CREATE MODEL Chapter7_RegressionModel.predict_ticket_price_auto

from

chapter7_RegressionModel.sporting_event_ticket_info_training

TARGET final_ticket_price

FUNCTION predict_ticket_price_auto

IAM_ROLE default

PROBLEM_TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3_bucket '<<your-S3-bucket>>',

s3_garbage_collect off,

max_runtime 9600);

After letting the model train for some time, check the status of the model as
follows:

SHOW MODEL Chapter7_RegressionModel.predict_ticket_price_auto;

This is how it appears:

Figure 7.13 – SHOW MODEL output

From the preceding figure, we see that two things stand out:

The MSE score is much better

Amazon SageMaker chose to use the XGBoost algorithm

We can check the MSE and RMSE scores for our new model using our
validation dataset as follows:

SELECT

 ROUND(AVG(POWER((actual_price_revenue -

predicted_price_revenue),2)),2) mse

 , ROUND(SQRT(AVG(POWER((actual_price_revenue -

predicted_price_revenue),2))),2) rmse

FROM

 (select home_team,

chapter7_RegressionModel.predict_ticket_price_auto (ticket_id,

event_id, sport, event_date_time, home_team, away_team,

Location, city, seat_level, seat_section, seat_row, seat,

list_ticket_price ,ticketholder) as predicted_price_revenue,

 final_ticket_price as actual_price_revenue

From

chapter7_RegressionModel.sporting_event_ticket_info_validation

);

This is the output:

Figure 7.14 – MSE and RMSE scores

These MSE and RMSE values show that we have a good model.

Let’s run a validation query using the predict_ticket_price_auto function
from the new model:

Select home_team,

sum(cast(chapter7_RegressionModel.predict_ticket_price_auto

(ticket_id, event_id, sport, event_date_time, home_team,

away_team,

Location, city, seat_level, seat_section, seat_row, seat,

list_ticket_price ,ticketholder) as decimal(8,2))) as

predicted_price_revenue,

sum(cast (final_ticket_price as decimal(8,2))) as

actual_price_revenue,

(predicted_price_revenue - actual_price_revenue) as diff,

((predicted_price_revenue -

actual_price_revenue)/actual_price_revenue) * 100 as pct_diff

From

chapter7_RegressionModel.sporting_event_ticket_info_validation

group by 1

order by 5 desc;

The following is the output for this query:

Figure 7.15 – Predicted price versus actual price

You can see we have much better results when comparing the differences
between the actual and predicted ticket price revenue. We will use this
model to do our prediction queries.

Run the following query to see which inputs contributed most to the model
prediction:

set search_path to chapter7_regressionmodel;

select

json_table.report.explanations.kernel_shap.label0.global_shap_val

ues from

 (select explain_model('predict_ticket_price_auto') as report) as

json_table

To make the result set easier to read, right-click on the result set and choose
Copy rows. You can then paste that into the editor as shown in Figure 7.16:

Figure 7.16 – Model explainability report

This shows that list_ticket_price contributed the most weight and sport
contributed the least weight.

We have validated the model with a validation dataset, checked the MSE
values, and determined feature importance. Now let’s run the prediction
query against test data.

Prediction query

Now that we have our model and have done validation, we can run our
prediction query against our test dataset to determine which teams and
events will need a proactive approach to increase ticket sales. Let’s check
for teams with a predicted revenue of less than 200K:

select t1.home_team, predicted_price_revenue

from

(Select home_team,

sum(cast(chapter7_RegressionModel.predict_ticket_price_auto

(ticket_id, event_id, sport, event_date_time, home_team,

away_team,

Location, city, seat_level, seat_section, seat_row, seat,

list_ticket_price ,ticketholder) as decimal (8,2))) as

predicted_price_revenue

From chapter7_RegressionModel.sporting_event_ticket_info_testing

group by 1) t1

where predicted_price_revenue < 200000;

This is the result:

Figure 7.17 – Predicted price against the test dataset

There are 16 teams that are predicted to have reduced ticket revenue. You
can share this information with your marketing teams to create a focused
strategy to ensure ticket revenues can remain on track.

Summary
In this chapter, we discussed regression models in detail and saw how to
create single-input and multi-input regression models. We learned how easy
it is to predict a numeric value. We also learned how to validate regression
models, take actions to improve our model’s accuracy, and do prediction
queries with our regression models. We walked through options for using
XGBoost, Linear Learner and auto options to train your model.

We also saw how we can check and validate the MSE score from the SHOW
MODEL output using SQL commands in Redshift.

In the next chapter, we will show you how to create unsupervised models
using the K-means algorithm.

8

Building Unsupervised Models with K-
Means Clustering
So far, we have learned about building machine learning (ML) models
where data is supplied with labels. In this chapter, we will learn about
building ML models on a dataset without any labels by using the K-means
clustering algorithm. Unlike supervised models, where predictions are
made at the observation level, K-means clustering groups observations into
clusters where they share a commonality – for example, similar
demographics or reading habits.

This chapter will provide detailed examples of business problems that can
be solved with these modeling techniques. By the end of this chapter, you
will be in a position to identify a business problem that an unsupervised
modeling technique can be applied to. You will also learn how to build,
train, and evaluate K-means model performance.

In this chapter, we will cover the following main topics:

Grouping data through cluster analysis

Creating a K-means ML model

Evaluating the results of K-means clustering

Technical requirements

This chapter requires a web browser and access to the following:

An AWS account

An Amazon Redshift Serverless endpoint

Amazon Redshift Query Editor v2

Complete the Getting started with Amazon Redshift Serverless section
in Chapter 1

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql.

Grouping data through cluster analysis
So far, we have explored datasets that contained input and target variables,
and we trained a model with a set of input variables and a target variable.
This is called supervised learning. However, how do you address a dataset
that does not contain a label to supervise the training? Amazon Redshift
ML supports unsupervised learning using the cluster analysis method, also
known as the K-means algorithm. In cluster analysis, the ML algorithm
automatically discovers the grouping of data points. For example, if you
have a population of 1,000 people, a clustering algorithm can group them
based on height, weight, or age.

Unlike supervised learning, where an ML model predicts an outcome based
on a label, unsupervised models use unlabeled data. One type of
unsupervised learning is clustering, where unlabeled data is grouped based
on its similarity or differences. From a dataset with demographic

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql

information about individuals, you can create clusters based on young,
adult, and elderly populations, underweight, normal weight, and overweight
populations, and so on. These groups are calculated based on values – for
example, if two people are young, then they are grouped together. These
groups are called clusters. In the following diagram, you can see that input
variables (Age, Height, and Weight) are grouped into young, adult, and
elder:

Figure 8.1 – A simple cluster example

In the preceding diagram, each individual data point is placed in a cluster,
based on the distance from the center of the cluster, called the centroid. The

distance from the centroid for each data point is calculated using the
Euclidean distance formula. Data points that are closest to a given
centroid have similarities and belong to the same group. In real-world
situations, it is very common to find data points with overlapping clusters
and too many of them. When you encounter too many clusters, then it is a
challenge to identify the right number of clusters for your dataset.

Common use cases for a K-means cluster include the following:

E-commerce: Grouping customers by purchase history

Healthcare: Detecting patterns of diseases

Finance: Grouping purchases into abnormal versus normal

Next, we will show you one of the common methods to help you determine
how many clusters you should use.

Determining the optimal number of
clusters
One popular method that is frequently adopted is the Elbow method. The
idea of the Elbow method is to run K-means algorithms with different
values of K – for example, from 1 cluster all the way to 10 – and for each
value of K, calculate the sum of squared errors. Then, plot a chart of the
sum of squared deviation (SSD) values. SSD is the sum of the squared
difference and is used to measure variance. If the line chart looks like an
arm, then the elbow on the arm is the value of K that is the best among the
various K values. The method behind this approach is that SSD usually
tends to decrease as the value of K is increased, and the goal of the

evaluation method is also to aim for lower SSD or mean squared deviation
(MSD) values. The elbow represents a starting point, where SSD starts to
have diminishing returns when the K value increases.

In the following chart, you can see that the MSD value, when charted over
different K values, represents an arm, and the elbow is at value 6. After 6,
there is no significant decrease in the MSD value, so we can pick 6 as the
best cluster value in the following scenario:

Figure 8.2 – MSD values when charted over different K values

Next, let’s see how we can create a K-means clustering model with Amazon
Redshift ML.

Creating a K-means ML model
In this section, we will walk through the process with the help of a use case.
In this use case, assume you are a data analyst for an e-commerce company
specializing in home improvement goods. You have been tasked with
classifying economic segments in different regions, based on income, so
that you can better target customers, based on various factors, such as
median home value. We will use this dataset from Kaggle:
https://www.kaggle.com/datasets/camnugent/california-housing-prices.

From this dataset, you will use the median_income, latitude, and longitude
attributes so that you can create clusters based on location and income.

The syntax to create a K-means model is slightly different from what you
will have used up to this point, so let’s dive into that.

Creating a model syntax overview for K-
means clustering

Here is the basic syntax to create a K-means model:

CREATE model model_name

FROM (Select_statement)

FUNCTION function_name

IAM_ROLE default

AUTO OFF

MODEL_TYPE KMEANS

PREPROCESSORS (StandardScaler', 'MinMax', 'NumericPassthrough')

HYPERPARAMETERS DEFAULT EXCEPT (K '2')

SETTINGS (S3_BUCKET 'bucket name');

A couple of key things to note in the preceding code snippet are the lines in
bold, as they are required when creating K-means models:

https://www.kaggle.com/datasets/camnugent/california-housing-prices

AUTO OFF: This must be turned off, since Amazon SageMaker Autopilot
is not used for K-means

MODEL_TYPE KMEANS: You must set MODEL_TYPE, as there is no auto-
discovery for K-means

HYPERPARAMETERS DEFAULT EXCEPT (K '2'): This tells SageMaker how
many clusters to create in this model

Also, note that there are three optional preprocessors available with K-
means. We will explore that in more detail when we create the model.

You can refer to this link for more details on the K-means parameters
available:
https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.x
html#r_k-means-create-model-parameters.

Now, we will load our dataset in preparation for creating our model.

Uploading and analyzing the data

For this use case, we will use a file that contains housing price information
and summary stats, based on census data.

NOTE
Data is stored in the following S3 location: s3://packt-serverless-ml-

redshift/chapter08/housinghousing_prices.csv.

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift and follow the steps outlined
here.

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_k-means-create-model-parameters

1. Navigate to Redshift query editor v2, connect to the Serverless:
default endpoint, and then connect to the dev database.

Figure 8.3 – Connecting via Redshift query editor v2

2. Execute the following steps to create the schema and customer table and
load the data:

create schema chapter8_kmeans_clustering;

create table chapter8_kmeans_clustering.housing_prices (

 longitude decimal(10,2),

 latitude decimal(10,2),

 housing_median_age integer,

 total_rooms integer,

 total_bedrooms integer,

 population integer,

 households integer,

 median_income decimal(10,6),

 median_house_value integer,

 ocean_proximity character varying (50)

)

diststyle auto;

copy chapter8_kmeans_clustering.housing_prices from

's3://packt-serverless-ml-

redshift/chapter08/kmeans/housing_prices.csv'

iam_role default format as csv delimiter ',' quote '"'

ignoreheader 1 region as 'eu-west-1';

This dataset contains 2,064,020,640 records. We will use longitude,
latitude, and median_income in our model.

3. Run the following query to examine some sample data:

select * from chapter8_kmeans_clustering.housing_prices

limit 10;

You should get the following result:

Figure 8.4 – Housing prices data

Now that the data is loaded, we are ready to create the model.

Creating the K-means model

Let’s create our model and cluster based on median_income, longitude, and
latitude.

We will create a few models and then use the elbow method to determine
the optimal number of clusters.

To begin with, let’s create our first model with two clusters using the
following SQL. You can then experiment by creating different models by
changing the K value, and then you can learn how the MSD value
diminishes over different K values.

Creating two clusters with a K value of 2
Let’s run the following SQL in Query Editor v2 to create a model with two
clusters:

create model chapter8_kmeans_clustering.housing_segments_k2

from(select

 median_income,

 latitude,

 longitude

from chapter8_kmeans_clustering.housing_prices)

function get_housing_segment_k2

iam_role default

auto off

model_type kmeans

preprocessors '[

 {

 "columnset": ["median_income", "latitude","longitude"],

 "transformers": ["standardscaler"]

 }

]'

hyperparameters default except (k '2')

settings (s3_bucket '<your s3 bucket>');

You can see in this model that we supply values for the preprocessors
parameter. We chose to do this because K-means is sensitive to scale, so we
can normalize with the standardscaler transformer. standardscalar moves
the mean and scale to unit variance.

The hyperparameters parameter is where we specify (K '2') to create two
clusters. Remember to add your S3 bucket, where the created model
artifacts are stored. You will find the model artifacts in s3: s3://<your-s3-
bucket>/redshift-ml/housing_segments_k2/. Redshift ML will
automatically append 'redshift-ml'/'your model name' to your S3 bucket.
Now, check the status of the model, using the SHOW MODEL command in
Query Editor v2:

SHOW MODEL chapter8_kmeans_clustering.housing_segments_k2;

You will see the following output:

Figure 8.5 – Two clusters

The key things to note are Model State, which indicates that the model is
ready, and train:msd, which is the objective metric. This represents the
mean squared distances between each record in our input dataset and the
closest center of the model. The MSD value is 1.088200, which is a good
score.

Let’s run a query to get the number of data points in each cluster:

 select chapter8_kmeans_clustering.get_housing_segment_k2

(median_income, latitude, longitude) as cluster, count(*) as

count from FROM chapter8_kmeans_clustering.housing_prices group

byGROUP BY 1 order byORDER BY 1;

The output is as follows:

Figure 8.6 – The data points

Clusters are numbered from 0 to n. Our first cluster has 8719 data points,
and the second cluster has 11921 data points.

In our use case, we want to further segment our customers. Let’s create a
few more models with different numbers of clusters. We can then evaluate
all the SSD values and apply the Elbow method to help us choose the
optimal number of clusters to use for our analysis.

Creating three clusters with a K value of 3
Let’s run the following SQL in Query Editor v2 to create a model with three
clusters:

CREATE model chapter8_kmeans_clustering.housing_segments_k3

FROM(Select

 median_income,

 latitude,

 longitude

From chapter8_kmeans_clustering.housing_prices)

FUNCTION get_housing_segment_k3

IAM_ROLE default

AUTO OFF

MODEL_TYPE KMEANS

PREPROCESSORS '[

 {

 "ColumnSet": ["median_income", "latitude","longitude"],

 "Transformers": ["StandardScaler"]

 }

]'

HYPERPARAMETERS DEFAULT EXCEPT (K '3')

SETTINGS (S3_BUCKET '<your s3 bucket>');

Creating the remaining models with clusters 4,
5, and 6
Repeat the preceding code 3 more times to create models with 4, 5, and 6
clusters, respectively. You will find the code at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql.

It will take ~15 minutes for all the models to finish training. Then, run the
SHOW MODEL command, including the one for the model where K = 2, as
shown here:

SHOW MODEL chapter8_kmeans_clustering.housing_segments_k2;

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql

SHOW MODEL chapter8_kmeans_clustering.housing_segments_k3;

SHOW MODEL chapter8_kmeans_clustering.housing_segments_k4;

SHOW MODEL chapter8_kmeans_clustering.housing_segments_k5;

SHOW MODEL chapter8_kmeans_clustering.housing_segments_k6;

Now, let’s find the elbow!

Gathering inputs to chart the elbow

Now, from the output of each SHOW MODEL command, note the value for
test:msd and build a Select statement, as shown in the following code
snippet. Change the value for MSD using the test:mds value for each
model.

As an example, we will use the value 1.088200, which we saw earlier for
train:msd, for the model with two clusters.

Our other output from train:mds from the SHOW MODEL output is as follows:

Two clusters: train:msd – 1.088200

Three clusters: train:msd – 0.775993

Four clusters: train:msd – 0.532355

Five clusters: train:msd – 0.437294

Six clusters: train:msd – 0.373781

Note that your numbers may be slightly different:

Select 2 as K, 1.088200 as MSD

Union

Select 3 as K, 0.775993 as MSD

Union

Select 4 as K, 0.532355 as MSD

Union

Select 5 as K, 0.437294 as MSD

Union

Select 6 as K, 0.373781 as MSD;

Run the preceding SQL command in Query Editor v2.

By observing the output, we can see that the MSD value is highest for two
clusters and gradually decreases as the number of clusters increases:

Figure 8.7 – msd

In the Result window, click on the Chart option, as shown here:

Figure 8.8 – Creating a chart

By choosing k as the X value and msd as the Y value, you will get the
following output:

Figure 8.9 – The elbow method chart

From the chart, we can see that when MSD is charted over a line graph, an
arm is formed, and the elbow is at 3. This means that there is little
difference in the MSD value with 4 clusters compared to 3 clusters . We can
see that after 3, the curve is very smooth, and the difference between the

MSD value does not drastically change compared to the beginning of the
line.

Let’s see how data points are clustered when we use a function deployed for
our model with three clusters:

select chapter8_kmeans_clustering.get_housing_segment_k3

(median_income, latitude, longitude) as cluster, count(*) as

count from chapter8_kmeans_clustering.housing_prices group by 1

order by 1;

We can see the following output from Query Editor v2. The counts
represent the number of data points assigned to each cluster:

Figure 8.10 – Three clusters

We can also chart this by clicking on the Chart button and observing the
cluster counts represented visually:

Figure 8.11 – The cluster data points

Now, let’s see how we can use our model to help make business decisions
based on the clusters.

Evaluating the results of the K-means
clustering
Now that you have segmented your clusters with the K-means algorithm,
you are ready to perform various analyses using the model you created.

Here is an example query you can run to get the average median house
value by cluster:

select avg(median_house_value) as avg_median_house_value,

chapter8_kmeans_clustering

.get_housing_segment_k3(median_income, latitude, longitude) as

cluster

from chapter8_kmeans_clustering

.housing_prices

group by 2

order by 1;

The output will look like this:

Figure 8.12 – Average median house values

You can also run a query to see whether higher median incomes correspond
to the same clusters with higher home values. Run the following query:

select avg(median_income) as median_income,

chapter8_kmeans_clustering.get_housing_segment_k3(

 median_income, latitude, longitude) as cluster

from chapter8_kmeans_clustering.housing_prices

group by 2

order by 1;

The output will look like this:

Figure 8.13 – median_income

When we established our use case, we said this was for an e-commerce
retailer specializing in home improvement products. Another way you
could use this information is to create different marketing campaigns and
tailor your product offerings, based on home values in a given cluster.

Summary
In this chapter, we discussed how to do unsupervised learning with the K-
means algorithm.

You are now able to explain what the K-means algorithm is and what use
cases it is appropriate for. Also, you can use Amazon Redshift ML to create
a K-means model, determine the appropriate number of clusters, and draw
conclusions by analyzing the clusters to help make business decisions.

In the next chapter, we will show you how to use the multi-layer perceptron
algorithm to perform deep learning with Amazon Redshift ML.

Part 3:Deploying Models with Redshift
ML
Part 3 introduces you to more ways to leverage Amazon Redshift ML. You
will learn about deep learning algorithms, how to train a customized model,
and how you can use models trained outside of Amazon Redshift to run
inference queries in your data warehouse.

This part closes with an introduction to time-series forecasting, how to use
it with Amazon Redshift ML, and how you can optimize and easily re-train
your models.

This part comprises the following chapters:

Chapter 9, Deep Learning with Redshift ML

Chapter 10, Creating Custom ML Models with XGBoost

Chapter 11, Bring Your Own Models for In-Database Inference

Chapter 12, Time-Series Forecasting in Your Data Warehouse

Chapter 13, Operationalizing and Optimizing Amazon Redshift ML
Models

9

Deep Learning with Redshift ML
We explored supervised learning in Chapters 6 and 7 and unsupervised
learning models in Chapter 8. In this chapter, we will explore deep
learning algorithms, a multilayer perceptron (MLP), which is a
feedforward artificial neural network (ANN), and understand how it
handles data that is not linearly separable (which means the data points in
your data cannot be separated by a clear line). This chapter will provide
detailed steps on how to perform deep learning in Amazon Redshift ML
using MLP. By the end of this chapter, you will be in a position to identify a
business problem that can be solved using MLP and know how to create the
model, evaluate the performance of the model, and run predictions.

In this chapter, we will go through the following main topics:

Introduction to deep learning

Business problem

Uploading and analyzing the data

Creating a multiclass classification model using MLP

Running predictions

Technical requirements
This chapter requires a web browser and access to the following:

AWS account

Amazon Redshift Serverless endpoint

Amazon Redshift Query Editor v2

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter9/chapter9.sql.

Introduction to deep learning
Deep learning is a type of artificial intelligence (AI) that uses algorithms
to analyze and learn data to draw output similar to the way humans do.
Deep learning can leverage both supervised and unsupervised learning
using artificial neural networks (ANNs). In deep learning, a set of outputs
is generated from the input layers using a feedforward ANN called an MLP.
The MLP utilizes backpropagation to feed the errors from the outputs back
into the layers to compute one layer at a time and iterates until the model
has learned the patterns and relationships in the input data to arrive at a
specific output.

Feature learning is a set of techniques where the machine uses raw data to
derive the characteristics of a class in the data to derive a specific task at
hand. Deep learning models use feature learning efficiently to learn
complex, redundant, and variable input data and classify the specified task.
Thus, it eliminates the need for manual feature engineering for designing
and selecting the input features. Deep learning is very useful when your
datasets cannot be separated by a straight line, known as non-linear data.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter9/chapter9.sql

For example, in classifying financial transactions as fraudulent or
legitimate, there may not be a clear linear boundary between the two classes
of data. In such cases, deep learning models can learn these variable and
complex non-linear relationships between the features of the input data and
thus improve the accuracy of the target classification.

When working on classification problems, an easy way to determine
whether your dataset is linearly separated is to draw a scatter plot for
classes and see whether two classes can be separated by a line or not. In the
following diagram, the left-hand chart shows that two classes are linearly
separated and the right-hand chart shows that they are not:

Figure 9.1 – Linear versus non-linear datasets

You can create models in Redshift ML when your dataset cannot be linearly
separated by using the MLP algorithm. Common use cases where MLP
algorithms are useful are as follows:

Speech recognition

Image recognition

Machine translation

This chapter will show you how to build deep learning models in Amazon
Redshift ML using the MLP algorithm.

Business problem
We will use a wall-following robot navigation dataset to build a machine
learning model using the MLP algorithm. The robot is equipped with
ultrasound sensors and data is collected as the robot navigates through the
room in a clockwise direction. The goal here is to guide the robot to follow
the wall by giving simple directions such as Move-Forward, Slight-Right-
Turn, Sharp-Right-Turn, and Slight-Left-Turn.

Since there are classes to predict for a given set of sensor readings, this is
going to be a multiclass problem. We will use MLP to correctly guide the
robot to follow the wall. (This data is taken from
https://archive.ics.uci.edu/ml/datasets/Wall-
Following+Robot+Navigation+Data and is attributed to Ananda Freire,
Marcus Veloso, and Guilherme Barreto (2019). UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.)

Please follow the detailed document on the page to gain more
understanding of the use case.

Now, you will upload the data, analyze it, and prepare for training the
model.

https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data
http://archive.ics.uci.edu/ml

Uploading and analyzing the data

We have sensor readings data stored in the following S3 location:

s3://packt-serverless-ml-redshift/chapter09/

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift:

1. Navigate to Redshift query editor v2 and connect to Serverless:
workgroup2 and then to the dev database:

Figure 9.2 – Connect to the dev database

2. Execute the following steps to create the schema and customer table,
and load the data:

create schema chapter9_deeplearning;

create table chapter9_deeplearning.robot_navigation (

 id bigint identity(0,1),

us1 float, us2 float, us3 float, us4 float, us5 float, us6

float, us7 float, us8 float, us9 float,us10 float, us11 float,

us12 float, us13 float, us14 float, us15 float, us16 float,

us17 float, us18 float, us19 float, us20 float, us21 float,

us22 float, us23 float, us24 float, direction varchar(256)

)

diststyle auto;

copy chapter9_deeplearning.robot_navigation from 's3://packt-

serverless-ml-redshift/chapter09/sensor_readings_24.data'

iam_role default

format as csv

delimiter ','

quote '"'

region as 'eu-west-1'

;

3. Run the following query to examine some sample data:

select * from

chapter9_deeplearning.robot_navigation

limit 10;

In Figure 9.3, we can see that our data has been loaded successfully:

Figure 9.3 – Sample output

From the preceding screenshot, we can see that there are several sensor
readings. Run the following query to see the distribution of the different
directions of the robot’s movements, as shown in Figure 9.4:

select direction, count(*)

from chapter9_deeplearning.robot_navigation

group by 1;

To view the results as a bar graph, please click on the toggle Chart button (

) on the Result pane. Under Traces, click on + Trace (

) and set Type as Bar, X-axis as Direction, and Y-axis as
Count from the dropdown. Keep Orientation as Vertical.

Figure 9.4 – Graph generated using Query Editor v2

You can notice that there are more Sharp-Right-Turn and Move-Forward
directions than Slight-Right-Turn and Slight-Left-Turn directions. We will
use these inputs to predict the future movement of the robot.

Prediction goal

Since this is a multiclass classification problem, the goal of this model is to
predict which direction the robot will take next based on the 24 sensor
readings.

The dataset has one ID column, which uniquely identifies a row of 24
sensor readings named us1, us2, …, us24, and a direction variable, which
has 4 values in it. The direction variable is the class variable that we are
trying to predict.

Now let’s split the dataset into a training dataset, which will be input to our
model, and a test dataset, which we will use to do our predictions.

Splitt ing data into training and test
datasets

We are going to split our table into two datasets, train and test, with an
approximately 80:20 split. Let’s use the mod function in Redshift to split our
table. The mod function returns the remainder of two numbers. We will pass
in the ID and the number 5.

To train the model, let’s use where mod(id,5) is not equal to 0, which
represents our training set of 80%. Run the following command in Query
Editor v2:

select direction, count(*)

from chapter9_deeplearning.robot_navigation

where mod(id,5) <> 0

group by 1;

In Figure 9.5, we see the data distribution based on ~80% of the data:

Figure 9.5 – Training dataset distribution

NOTE

You might see a different count than we have shown. We are using Redshift’s Identity

function to generate the values for the id column. To be sure that the identity values are

unique, Amazon Redshift skips some values when creating the identity values. Identity
values are unique but the order might not match. Hence, you might see a different count but
the data is 80% of the total count (5,456 rows).

The Chart function in Query Editor v2 depicts this in a bar chart format as
shown in Figure 9.6:

Figure 9.6 – Training set bar chart

To test the model, let’s use where mod(id,5) is equal to 0, which represents
our test dataset of 20%:

select direction, count(*) from

chapter9_deeplearning.robot_navigation

where mod(id,5) = 0

group by 1;

In Figure 9.7, we see the data distribution based on ~20% of the data:

Figure 9.7 – Test dataset distribution

The Chart function in Query Editor v2 depicts this in a bar chart format as
shown in Figure 9.8:

Figure 9.8 – Test data bar chart

Now that we have analyzed our data and determined how we will split it
into training and test datasets, let’s create our model using the MLP
algorithm.

Creating a multiclass classification model
using MLP
In this exercise, we are going to guide the CREATE MODEL statement to use the
MLP model. You will achieve that by setting the model_type parameter to
MLP. The rest of the parameters can be set to default.

Let’s create a model to predict the direction of the robot:

CREATE MODEL chapter9_deeplearning.predict_robot_direction

from (select

us1 ,us2 , us3 , us4 , us5 , us6 ,us7 , us8 , us9 ,

us10 ,us11 ,us12 ,us13 ,us14 ,us15 ,us16 ,us17 ,

us18 ,us19 ,us20 ,us21 , us22 ,us23 ,us24 , direction

 from chapter9_deeplearning.robot_navigation

 where mod(id,5) !=0)

target direction

function predict_robot_direction_fn

iam_role default

model_type mlp

settings (s3_bucket 'replace-with-your-s3-bucket',

max_runtime 1800);

The CREATE MODEL function is run with a max_runtime value of 1800 seconds.
This means the maximum amount of time to train the model is 30 minutes.
Training jobs often complete sooner depending on the dataset size. Since
we have not set other parameters (for example, objective or problem type),
Amazon SageMaker Autopilot will be doing the bulk of the work to
identify the parameters for us.

Run the SHOW MODEL command to check whether model training is
completed:

SHOW MODEL chapter9_deeplearning.predict_robot_direction;

Check Model State in Figure 9.9:

Figure 9.9 – SHOW MODEL output

From the preceding screenshot, we can see that the Model State field
shows the status as TRAINING, which means the model is still under
training. But notice that Redshift ML has picked up Model Type as mlp;

other parameters such as Problem Type and Objective are empty now, but
after the model has been trained, we will see these values.

Run the SHOW MODEL command again after some time to check whether
model training is complete or not. From the following screenshot, notice
that model training has finished and Accuracy has been selected as the
objective for model evaluation. This is auto-selected by Redshift ML. Also
notice that Redshift ML correctly recognized this as a multiclass
classification problem:

Figure 9.10 – SHOW MODEL output

Now that our model has finished training, let’s run predictions using the
function that was created. In Figure 9.10, Function Name is
predict_robot_direction_fn and we will refer to that in our prediction
query.

Also note the validation:accuracy value of .940026 in Figure 9.10. This
means our model has an accuracy of >94%, which is very good.

NOTE
You might get a different accuracy value due to different hyperparameters selected for the
algorithm in the background, and this can slightly affect accuracy.

Since our model has been successfully trained, let’s run some predictions on
our test dataset.

Running predictions

In this first query, we will be using the function returned by the CREATE
MODEL command to compare the actual direction with our predicted
directions. Run the following query in Query Editor v2 to see how many
times we predicted correctly:

select correct, count(*)

from

(select DIRECTION as actual,

chapter9_deeplearning.predict_robot_direction_fn (

US1,US2,US3,US4,US5,US6,US7,US8,US9,US10,US11,US12,

US13,US14,US15,US16,US17,US18,US19,US20,US21,US22,US23,US24

) as predicted,

 CASE WHEN actual = predicted THEN 1::INT

 ELSE 0::INT END AS correct

from chapter9_deeplearning.robot_navigation

where MOD(id,5) =0

) t1

group by 1;

In Figure 9.11, we see that our model correctly predicted the robot’s
direction 1,033 times.

Please note that your count might be slightly different:

Figure 9.11 – Actual directions versus predicted direction

Now, let’s run a query against the test dataset to predict which direction the
robot will move. Run the following query in Query Editor v2 to return the
first 10 rows:

 select id, chapter9_deeplearning.predict_robot_direction_fn (

US1,US2,US3,US4,US5,US6,US7,US8,US9,US10,US11,US12,

US13,US14,US15,US16,US17,US18,US19,US20,US21,US22,US23,US24

) as predicted_direction

from chapter9_deeplearning.robot_navigation

where MOD(id,5) <> 0

limit 10;

In Figure 9.12, we show the first 10 rows and the direction based on the ID:

Figure 9.12 – Predicted direction by ID

Now, let’s modify the query to summarize our predicted robot movements.
Run the following in Query Editor v2:

select chapter9_deeplearning.predict_robot_direction_fn (

US1,US2,US3,US4,US5,US6,US7,US8,US9,US10,US11,US12,

US13,US14,US15,US16,US17,US18,US19,US20,US21,US22,US23,US24

) as predicted_direction, count(*)

from chapter9_deeplearning.robot_navigation

where MOD(id,5) <> 0

group by 1;

In Figure 9.13, we can see that Move-Forward is the most popular
direction, followed closely by Sharp-Right-Turn. Please note that your
counts might differ slightly.

Figure 9.13 – Summary of predicted direction

You have now created a model using the MLP algorithm and run
predictions on the test dataset.

Summary
In this chapter, we discussed deep learning models and why you need them
and showed you how to create an MLP model on sensor-reading data to
predict the next movement of the robot. You learned that non-linear datasets
are suited for deep learning and created a multiclass classification model
using the MLP algorithm.

In the next chapter, we will show you how to create a model with complete
control of hyper-tuning parameters using XGBoost algorithms.

10

Creating a Custom ML Model with
XGBoost
So far, all of the supervised learning models we have explored have utilized
the Amazon Redshift Auto ML feature, which uses Amazon SageMaker
Autopilot behind the scenes. In this chapter, we will explore how to create
custom machine learning (ML) models. Training a custom model gives
you the flexibility to choose the model type and the hyperparameters to use.
This chapter will provide examples of this modeling technique. By the end
of this chapter, you will know how to create a custom XGBoost model and
how to prepare the data to train your model using Redshift SQL.

In this chapter, we will go through the following main topics:

Introducing XGBoost

Introducing an XGBoost use case

XGBoost model with Auto off feature

Technical requirements
This chapter requires a web browser and access to the following:

An AWS account

An Amazon Redshift Serverless endpoint

Amazon Redshift Query Editor v2

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter10/chapter10.sql

Introducing XGBoost
XGBoost gets its name because it is built on the Gradient Boosting
framework. Using a tree-boosting technique provides a fast method for
solving ML problems. As you have seen in previous chapters, you can
specify the model type, which can help speed up model training since
SageMaker Autopilot does not have to determine which model type to use.

You can learn more about XGBoost here:
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.xhtml.

When you create a model with Redshift ML and specify XGBoost as the
model type, and optionally specify AUTO OFF, this turns off SageMaker
Autopilot and you have more control of model tuning. For example, you
can specify the hyperparameters you wish to use. You will see an example
of this in the Creating a binary classification model using XGBoost section.

You will have to perform preprocessing when you set AUTO to OFF.
Carrying out the preprocessing ensures we will get the best possible model
and is also necessary since all inputs must be numeric when you set AUTO
to OFF, for example, by making sure data is cleansed, categorical variables
are encoded, and numeric variables are standardized. You will also need to
identify the type of problem that you have and select an appropriate model
to train. You will be able to create train and test datasets and evaluate
models yourself. You also have the ability to tune the hyperparameters. In

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter10/chapter10.sql
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.xhtml

summary, you get total control of the end-to-end ML model training and
building.

By using XGBoost with Amazon Redshift ML, you can solve both
regression and classification problems. You also can specify the learning
objective of your model. For example, if you are solving a binary
classification problem, you would choose binary:logistic as your
objective or use multi:softmax for multi-class classification problems.

At the time of writing this book, the supported learning objectives are
reg:squarederror, reg:squaredlogerror, reg:logistic,
reg:pseudohubererror, reg:tweedie, binary:logistic, binary:hinge, and
multi:softmax.

For more information about these objectives, see the Learning Task
Parameters section of the XGBoost documentation here:
https://xgboost.readthedocs.io/en/latest/parameter.xhtml#learning-task-
parameters.

Now that you have learned what XGBoost is, we will take a look at a use
case where we can apply XGBoost and solve a common business problem
using binary classification.

Introducing an XGBoost use case
In this section, we will be discussing a use case where we want to predict
whether credit card transactions are fraudulent. We will be going through
the following steps:

Defining the business problem

https://xgboost.readthedocs.io/en/latest/parameter.xhtml#learning-task-parameters

Uploading, analyzing, and preparing data for training

Splitting data into training and testing datasets

Preprocessing the input variables

Defining the business problem

In this section, we will use a credit card payment transaction dataset to
build a binary classification model using XGBoost in Redshift ML. This
dataset contains customer and terminal information along with the date and
amount related to the transaction. This dataset also has some derived fields
based on recency, frequency, and monetary numeric features, along with a
few categorical variables, such as whether a transaction occurred during the
weekend or at night. Our goal is to identify whether a transaction is
fraudulent or non-fraudulent. This use case is taken from
https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook.
Please refer to the GitHub repository to learn more about this data
generation process.

DATASET CITATION
Reproducible Machine Learning for Credit Card Fraud Detection - Practical Handbook, Le
Borgne, Yann-Aël and Siblini, Wissam and Lebichot, Bertrand and Bontempi, Gianluca,
https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook, 2022, Université
Libre de Bruxelles

Now, we will load our dataset into Amazon Redshift ML and prepare it for
model training.

https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook
https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook

Uploading, analyzing, and preparing data
for training

Before we begin, let’s first connect to Redshift as an admin or database
developer and then load data into Amazon Redshift.

In the following steps, you will create a schema for all of the tables and
objects needed for this exercise, which involves creating all the needed
tables, loading data, and creating the views used for data transformations.

Navigate to Query Editor v2, connect to the serverless endpoint, and then
connect to the dev database, as shown in the following screenshot:

Figure 10.1 – Connect to Query Editor v2

1. Execute the following step to create the schema. This schema will be
used for all objects and models created in this chapter:

CREATE SCHEMA chapter10_xgboost;

2. Next, copy the following SQL statement into Query Editor v2 to create
the table for hosting the customer payment transaction history, which
we will load in the subsequent step:

create table chapter10_xgboost.cust_payment_tx_history

(

transaction_id integer,

tx_datetime timestamp,

customer_id integer,

terminal_id integer,

tx_amount decimal(9,2),

tx_time_seconds integer,

tx_time_days integer,

tx_fraud integer,

tx_fraud_scenario integer,

tx_during_weekend integer,

tx_during_night integer,

customer_id_nb_tx_1day_window decimal(9,2),

customer_id_avg_amount_1day_window decimal(9,2),

customer_id_nb_tx_7day_window decimal(9,2),

customer_id_avg_amount_7day_window decimal(9,2),

customer_id_nb_tx_30day_window decimal(9,2),

customer_id_avg_amount_30day_window decimal(9,2),

terminal_id_nb_tx_1day_window decimal(9,2),

terminal_id_risk_1day_window decimal(9,2),

terminal_id_nb_tx_7day_window decimal(9,2),

terminal_id_risk_7day_window decimal(9,2),

terminal_id_nb_tx_30day_window decimal(9,2),

terminal_id_risk_30day_window decimal(9,2)

)

;

3. Now that you have created the table, you can execute the following
command in Query Editor v2 to load the table:

copy chapter10_xgboost.cust_payment_tx_history

from 's3://packt-serverless-ml-

redshift/chapter10/credit_card_transactions_transformed_balanc

ed.csv'

iam_role default

ignoreheader 1

csv region 'eu-west-1';

4. Now that you have loaded the data, it’s a good practice to sample some
data to make sure our data is loaded properly. Run the following query
to sample 10 records:

select * from

chapter10_xgboost.cust_payment_tx_history

limit 10;

In the following screenshot, we can see that we have loaded the data
correctly with a sampling of different transaction IDs:

Figure 10.2 – Data sample

As discussed in earlier chapters, the target variable is the value that we are
trying to predict in our model. In our use case, we are trying to predict
whether a transaction is fraudulent. In our dataset, this is the tx_fraud
attribute, which is our target. Let us check our table to see how many
transactions were flagged as fraudulent.

Run the following command in Query Editor v2:

select tx_fraud, count(*)

from chapter10_xgboost.cust_payment_tx_history

group by 1;

We identify fraudulent transactions in our dataset as those with a tx_fraud
value of 1. We have identified 14,681 transactions as fraudulent in our
dataset. Conversely, a tx_fraud value of 0 indicates that a transaction is not
fraudulent:

Figure 10.3 – Fraudulent transactions

Let us look at the trend of fraudulent and non-fraudulent transactions over
the months. We want to analyze whether there are any unusual spikes in
fraudulent transactions.

Run the following SQL command in Query Editor v2:

select to_char(tx_datetime, 'yyyymm') as yearmonth,

sum(case when tx_fraud = 1 then 1 else 0 end) fraud_tx,

sum(case when tx_fraud = 0 then 1 else 0 end) non_fraud_tx,

count(*) as total_tx,

(fraud_tx::decimal(10,2) / total_tx::decimal(10,2)) *100 as

fraud_txn_pct

from chapter10_xgboost.cust_payment_tx_history

group by yearmonth

order by yearmonth

Notice that fraudulent transactions increased by nearly 8 percent in 202207
over 202206:

Figure 10.4 – Fraudulent transaction trends

Now that we have loaded our data, let’s get our data prepared for model
training by splitting the data into train and test datasets. The training data is
used to train the model and the testing data is used to run our prediction
queries.

Splitt ing data into train and test datasets

To train the model, we will have transactions that are older than 2022-10-01,
which is ~ 80 percent of the transactions.

To test the model, we will use transactions from after 2022-09-30, which is
20 percent of the transactions.

Preprocessing the input variables

We have a combination of numeric and categorical variables in our input
fields. We need to preprocess the categorical variables into one-hot-encoded
values and standardize the numeric variables. Since we will be using
AUTO OFF, SageMaker does not automatically preprocess the data.

Hence, it is important to transform various numeric, datetime, and
categorical features.

Categorical features (also referred to as nominal) have distinct categories
or levels. These can be categories without an order to them, such as country
or gender. Or they can have an order such as level of education (also
referred to as ordinal).

Since ML models need to operate on numeric variables, we need to apply
ordinal encoding or one-hot encoding.

To make things easier, we have created the following view to take care of
the transformation logic. This view is somewhat lengthy, but actually, what
the view is doing is quite simple:

Calculating the transaction time in seconds and days

Applying one-hot encoding by assigning 0 or 1 to classify transactions
as weekday, weekend, daytime, or nighttime (such as
TX_DURING_WEEKEND or TX_DURING_NIGHT)

Applying window functions to transactions so that we make it easy to
visualize the data in 1-day, 7-day, and 30-day intervals

Execute the following SQL command in Query Editor v2 to create the view
by applying the transformation logic:

create view chapter10_xgboost.credit_payment_tx_history_scaled

as

select

transaction_id, tx_datetime, customer_id, terminal_id,

tx_amount ,

((tx_amount - avg(tx_amount) over())

/ cast(stddev_pop(tx_amount) over() as dec(14,2))) s_tx_amount,

tx_time_seconds ,

 ((tx_time_seconds - avg(tx_time_seconds) over())

/ cast(stddev_pop(tx_time_seconds) over() as dec(14,2)))

s_tx_time_seconds,

tx_time_days ,

 ((tx_time_days - avg(tx_time_days) over())

/ cast(stddev_pop(tx_time_days) over() as dec(14,2)))

s_tx_time_days,

tx_fraud ,

 tx_during_weekend ,

case when tx_during_weekend = 1 then 1 else 0 end as

tx_during_weekend_ind,

case when tx_during_weekend = 0 then 1 else 0 end

tx_during_weekday_ind,

tx_during_night,

case when tx_during_night = 1 then 1 else 0 end as

tx_during_night_ind,

case when tx_during_night = 0 then 1 else 0 end as

tx_during_day_ind,

customer_id_nb_tx_1day_window ,

 ((customer_id_nb_tx_1day_window -

avg(customer_id_nb_tx_1day_window) over())

/ cast(stddev_pop(customer_id_nb_tx_1day_window) over() as

dec(14,2))) s_customer_id_nb_tx_1day_window,

customer_id_avg_amount_1day_window ,

 ((customer_id_avg_amount_1day_window -

avg(customer_id_avg_amount_1day_window) over())

/ cast(stddev_pop(customer_id_avg_amount_1day_window) over() as

dec(14,2))) s_customer_id_avg_amount_1day_window,

customer_id_nb_tx_7day_window ,

 ((customer_id_nb_tx_7day_window -

avg(customer_id_nb_tx_7day_window) over())

/ cast(stddev_pop(customer_id_nb_tx_7day_window) over() as

dec(14,2))) s_customer_id_nb_tx_7day_window,

customer_id_avg_amount_7day_window ,

 ((customer_id_avg_amount_7day_window -

avg(customer_id_avg_amount_7day_window) over())

/ cast(stddev_pop(customer_id_avg_amount_7day_window) over() as

dec(14,2))) s_customer_id_avg_amount_7day_window,

customer_id_nb_tx_30day_window ,

 ((customer_id_nb_tx_30day_window -

avg(customer_id_nb_tx_30day_window) over())

/ cast(stddev_pop(customer_id_nb_tx_30day_window) over() as

dec(14,2))) s_customer_id_nb_tx_30day_window,

customer_id_avg_amount_30day_window ,

 ((customer_id_avg_amount_30day_window -

avg(customer_id_avg_amount_30day_window) over())

/ cast(stddev_pop(customer_id_avg_amount_30day_window) over() as

dec(14,2))) s_customer_id_avg_amount_30day_window,

terminal_id_nb_tx_1day_window ,

 ((terminal_id_nb_tx_1day_window -

avg(terminal_id_nb_tx_1day_window) over())

/ cast(stddev_pop(terminal_id_nb_tx_1day_window) over() as

dec(14,2))) s_terminal_id_nb_tx_1day_window,

terminal_id_risk_1day_window ,

 ((terminal_id_risk_1day_window -

avg(terminal_id_risk_1day_window) over())

/ cast(stddev_pop(terminal_id_risk_1day_window) over() as

dec(14,2))) s_terminal_id_risk_1day_window,

terminal_id_nb_tx_7day_window ,

 ((terminal_id_nb_tx_7day_window -

avg(terminal_id_nb_tx_7day_window) over())

/ cast(stddev_pop(terminal_id_nb_tx_7day_window) over() as

dec(14,2))) s_terminal_id_nb_tx_7day_window,

terminal_id_risk_7day_window ,

 ((terminal_id_risk_7day_window -

avg(terminal_id_risk_7day_window) over())

/ cast(stddev_pop(terminal_id_risk_7day_window) over() as

dec(14,2))) s_terminal_id_risk_7day_window,

terminal_id_nb_tx_30day_window ,

 ((terminal_id_nb_tx_30day_window -

avg(terminal_id_nb_tx_30day_window) over())

/ cast(stddev_pop(terminal_id_nb_tx_30day_window) over() as

dec(14,2))) s_terminal_id_nb_tx_30day_window,

terminal_id_risk_30day_window ,

 ((terminal_id_risk_30day_window -

avg(terminal_id_risk_30day_window) over())

/ cast(stddev_pop(terminal_id_risk_30day_window) over() as

dec(14,2))) s_terminal_id_risk_30day_window

from

chapter10_xgboost.cust_payment_tx_history;

Now that the view is created, let’s sample 10 records.

Execute the following command in Query Editor v2:

SELECT * from chapter10_XGBoost.credit_payment_tx_history_scaled

limit 10;

We can see some of our transformed values, such as tx_time_seconds and
txn_time_days, in the following screenshot:

Figure 10.5 – Transformed data

Now, let’s quickly review why we needed to create this view:

Since we are using XGBoost with Auto OFF, we must do our own data
preprocessing and feature engineering

We applied one-hot encoding to our categorical variables

We scaled our numeric variables

Here is a summary of the view logic:

The target variable we used is TX_FRAUD

The categorical variables we used are TX_DURING_WEEKEND_IND,
TX_DURING_WEEKDAY_IND, TX_DURING_NIGHT_IND, and TX_DURING_DAY_IND

The scaled numeric variables are s_customer_id_nb_tx_1day_window,
s_customer_id_avg_amount_1day_window,
s_customer_id_nb_tx_7day_window,
s_customer_id_avg_amount_7day_window,s_customer_id_nb_tx_30day_w

indow, s_customer_id_avg_amount_30day_window,
s_terminal_id_nb_tx_1day_window, s_terminal_id_risk_1day_window,
s_terminal_id_nb_tx_7day_window, s_terminal_id_risk_7day_window,
s_terminal_id_nb_tx_30day_window, and
s_terminal_id_risk_30day_window

You have now completed data preparation and are ready to create your
model!

Creating a model using XGBoost with
Auto Off
In this exercise, we are going to create a custom binary classification model
using the XGBoost algorithm. You can achieve this by setting AUTO off.
Here are the parameters that are available:

AUTO OFF

MODEL_TYPE

OBJECTIVE

HYPERPARAMETERS

For the complete list of hyperparameter values that are available and their
defaults, please read the documentation found here:

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.x
html#r_auto_off_create_model

Now that you have a basic understanding of the parameters available with
XGBoost, you can create the model.

Creating a binary classification model
using XGBoost

Let’s create a model to predict whether a transaction is fraudulent or non-
fraudulent. As you learned in the previous chapters, creating models with
Amazon Redshift ML is simply done by running a SQL command that
creates a function. As inputs (or features), you will be using the attributes
from the view that you created in the previous section. You will specify
tx_fraud as the target and give the function name, which you will use later
in your prediction queries. Additionally, you will specify hyperparameters
to do your own model tuning. Let’s begin!

Execute the following commands in Query Editor v2. The following is a
code snippet; you may retrieve the full code from the following URL:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/chapter10.sql

drop model chapter10_XGBoost.cust_cc_txn_fd_xg;

 create model chapter10_xgboost.cust_cc_txn_fd_xg

from (

select

 s_tx_amount,

tx_fraud,

…

 from chapter10_xgboost.payment_tx_history_scaled

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_auto_off_create_model
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/chapter10.sql

 where cast(tx_datetime as date) between '2022-06-01' and '2022-

09-30'

)

target tx_fraud

function fn_customer_cc_fd_xg

iam_role default

auto off

model_type xgboost

objective 'binary:logistic'

preprocessors 'none'

hyperparameters default except (num_round '100')

settings (

 s3_bucket '<<your-s3-bucket>>',

 s3_garbage_collect off,

 max_runtime 1500

);

The CREATE MODEL function is going to invoke the XGBoost algorithm and
train a binary classification model. We have set AUTO off, which means
Autopilot is not going to perform any tasks for us. We are customizing the
model to be a binary classifier using preprocessed data. We also set the
num_round hyperparameter value to 100, which is the number of rounds to
run the training.

Now, let’s run SHOW MODEL to see whether model training is completed. Run
the following command in Query Editor v2:

SHOW MODEL chapter10_XGBoost.cust_cc_txn_fd_xg;

Note Model State in the following screenshot, which shows your model is
still training:

Figure 10.6 – Show model output

From the preceding screenshot, we notice that the value of Model State is
TRAINING, which is self-explanatory – the model is still training. You
will also see that Redshift ML has picked up the parameters we supplied in

the CREATE MODEL statement – Model Type is set to xgboost. objective is set
to binary:logistic and the num_round parameter is set to 100.

When you have a custom model with AUTO OFF and specify the
hyperparameters, the model can be trained much faster. This model will
usually finish in under 10 minutes.

Run the SHOW MODEL command again after 10 minutes to check whether
model training is complete or not. As you can see from the following
screenshot, model training has completed and the train:error field reports
the error rate. Most datasets have a threshold of .5, so our value of 0.051870
is very good, as seen in the following screenshot:

Figure 10.7 – SHOW MODEL output

Now, your model is complete and has a good score based on score –
train_error, which is 0.051870. You are now ready to use it for predictions.

Generating predictions and evaluating
model performance

Run the following query in Query Editor v2, which will compare the actual
tx_fraud value with the predicted_tx_fraud value:

select

tx_fraud ,

fn_customer_cc_fd_xg(

s_tx_amount,

tx_during_weekend_ind,

tx_during_weekday_ind,

tx_during_night_ind,

tx_during_day_ind,

s_customer_id_nb_tx_1day_window,

s_customer_id_avg_amount_1day_window,

s_customer_id_nb_tx_7day_window,

s_customer_id_avg_amount_7day_window,

s_customer_id_nb_tx_30day_window,

s_customer_id_avg_amount_30day_window,

s_terminal_id_nb_tx_1day_window,

s_terminal_id_risk_1day_window,

s_terminal_id_nb_tx_7day_window,

s_terminal_id_risk_7day_window,

s_terminal_id_nb_tx_30day_window,

s_terminal_id_risk_30day_window)

from chapter10_xgboost.credit_payment_tx_history_scaled

where cast(tx_datetime as date) >= '2022-10-01'

;

The following screenshot shows the sample output. In this screenshot, our
predicted values are the same as the actual values:

Figure 10.8 – Inference query output

Since we did not get the F1 value for our model from Redshift ML, let’s
calculate it. We will create a view that contains the logic to accomplish this:

--drop view if exists chapter10_xgboost.fraud_tx_conf_matrix;

create or replace view chapter10_xgboost.fraud_tx_conf_matrix

as

select

transaction_id,tx_datetime,customer_id,tx_amount,terminal_id,

tx_fraud,

 fn_customer_cc_fd_xg(

 s_tx_amount,

tx_during_weekend_ind,

tx_during_weekday_ind,

tx_during_night_ind,

tx_during_day_ind,

s_customer_id_nb_tx_1day_window,

s_customer_id_avg_amount_1day_window,

s_customer_id_nb_tx_7day_window,

s_customer_id_avg_amount_7day_window,

s_customer_id_nb_tx_30day_window,

s_customer_id_avg_amount_30day_window,

s_terminal_id_nb_tx_1day_window,

s_terminal_id_risk_1day_window,

s_terminal_id_nb_tx_7day_window,

s_terminal_id_risk_7day_window,

s_terminal_id_nb_tx_30day_window,

s_terminal_id_risk_30day_window)

as prediction,

case when tx_fraud =1 and prediction = 1 then 1 else 0 end

truepositives,

case when tx_fraud =0 and prediction = 0 then 1 else 0 end

truenegatives,

case when tx_fraud =0 and prediction = 1 then 1 else 0 end

falsepositives,

case when tx_fraud =1 and prediction = 0 then 1 else 0 end

falsenegatives

 from chapter10_xgboost.credit_payment_tx_history_scaled

 where cast(tx_datetime as date) >= '2022-10-01';

Run the following SQL command in Query Editor v2 to check the F1 score
that we calculated in the view:

select

sum(truepositives+truenegatives)*1.00/(count(*)*1.00) as

accuracy,--accuracy of the model,

sum(falsepositives+falsenegatives)*1.00/count(*)*1.00 as

error_rate, --how often model is wrong,

sum(truepositives)*1.00/sum (truepositives+falsenegatives) *1.00

as tpr, --or recall how often corrects are rights,

sum(falsepositives)*1.00/sum (falsepositives+truenegatives)*1.00

fpr, --or fall-out how often model said yes when it is no,

sum(truenegatives)*1.00/sum (falsepositives+truenegatives)*1.00

tnr, --or specificity, how often model said no when it is yes,

sum(truepositives)*1.00 / (sum

(truepositives+falsepositives)*1.00) as precision, -- when said

yes how it is correct,

2*((tpr*precision)/ (tpr+precision)) as f_score --weighted avg

of tpr & fpr

from chapter10_xgboost.fraud_tx_conf_matrix

;

You can see our accuracy is 90 percent and our F1 score is 87 percent,
which are both very good. Additionally, our confusion matrix values tell us
how many times we correctly predicted True and correctly predicted False:

Figure 10.9 – F1 score

Now, let’s check actual versus prediction counts. Run the following query
in Query Editor v2:

select tx_fraud,prediction, count(*)

from chapter10_xgboost.fraud_tx_conf_matrix

group by tx_fraud,prediction;

The output in the following screenshot shows, for a given value, what our
prediction was compared to the actual value and the count of those records.
Our model incorrectly predicted a fraudulent transaction 178 times and
incorrectly predicted a non-fraudulent transaction 1,081 times:

Figure 10.10 – Confusion matrix

This demonstrates how Redshift ML can help you confidently predict
whether a transaction is fraudulent.

Summary
In this chapter, you learned what XGBoost is and how to apply it to a
business problem. You learned how to specify your own hyperparameters
when using the Auto Off option and how to specify the objective for a
binary classification problem. Additionally, you learned how to do your
own data preprocessing and calculate the F1 score to validate the model
performance.

In the next chapter, you will learn how to bring your own models from
Amazon SageMaker for in-database or remote inference.

11

Bringing Your Own Models for Database
Inference
In this book, we’ve covered the process of training models natively using
Redshift Machine Learning (Redshift ML). However, there may be
instances where you need to utilize models built outside of Redshift. To
address this, Redshift ML offers the Bring Your Own Model (BYOM)
feature, allowing users to integrate their Amazon SageMaker machine
learning models with Amazon Redshift. This feature facilitates making
predictions and performing other machine learning tasks on data stored in
the warehouse, without requiring data movement.

BYOM offers two approaches: local inference and remote inference. In
this chapter, we’ll delve into the workings of BYOM and explore the
various options available for creating and integrating BYOM. You’ll be
guided through the process of building a machine learning model in
Amazon SageMaker, and subsequently, employing Redshift ML’s BYOM
feature to bring that model to Redshift. Moreover, you’ll learn how to apply
these models to the data stored in Redshift’s data warehouse to make
predictions.

By the end of this chapter, you’ll be proficient in bringing Amazon
SageMaker-created models and executing predictions within Amazon
Redshift. Utilizing BYOM, you can deploy models such as XGBoost and a
multilayer perceptron (MLP) to Redshift ML. Once a pre-trained model

is deployed on Redshift ML, you can run inferences locally on Redshift
without relying on a SageMaker endpoint or SageMaker Studio. This
simplicity empowers data analysts to conduct inference on new data using
models created externally to Redshift, eliminating concerns about accessing
SageMaker’s services.

This method significantly speeds up the delivery of machine learning
models created outside of Redshift to the data team. Furthermore, since
Redshift ML interacts with native Redshift SQL, the user experience for the
data team remains consistent with other data analysis work performed on
the data warehouse.

In this chapter, we will go through the following main topics:

Benefits of BYOM

Supported model types

BYOM for local inference

BYOM for remote inference

Technical requirements
This chapter requires a web browser and access to the following:

An AWS account

An Amazon Redshift Serverless endpoint

An Amazon SageMaker notebook

Amazon Redshift Query Editor v2

Completing the Getting started with Amazon Redshift Serverless section
in Chapter 1

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift

The data files required for this chapter are located in a public S3 bucket:
s3://packt-serverless-ml-redshift/.

Let’s begin!

Benefits of BYOM
With Amazon Redshift ML, you can use an existing ML model built in
Amazon SageMaker and use it in Redshift without having to retrain it. To
use BYOM, you need to provide model artifacts or a SageMaker endpoint,
which takes a batch of data and returns predictions. BYOM is useful in
cases where a machine learning model is not yet available in Redshift ML,
for example, at the time of writing this book, a Random Cut Forest model is
not yet available in Redshift ML, so you can build this model in SageMaker
and easily bring it to Redshift and then use it against the data stored in
Redshift.

Here are some specific benefits of using Redshift ML with your own ML
model:

Improved efficiency: By using an existing ML model, you can save
time and resources that would otherwise be spent on training a new
model

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift

Easy integration: Redshift ML makes it easy to integrate your ML
model into your data pipeline, allowing you to use it for real-time
predictions or batch predictions

Scalability: Redshift ML is built on top of the highly scalable and
performant Amazon Redshift data warehouse, so you can use your ML
model to make predictions on large datasets without worrying about
performance issues

Supported model types

Amazon Redshift ML supports a wide range of machine learning models
through the BYOM feature. Some common types of models that can be
used with BYOM include the following:

Linear regression models: These models are like number predictors.
They take into account several factors or features and use them to guess
a specific numerical outcome. For example, if you want to predict the
price of a house, a linear regression model would consider factors such
as the size of the house, the number of rooms, and the location to
estimate the house’s price.

Logistic regression models: These models are binary outcome
predictors. Instead of guessing numbers, they answer yes or no
questions or make 0/1 predictions. For instance, if you want to predict
whether a student will pass or fail an exam, a logistic regression model
would consider factors such as the student’s study hours, previous test
scores, and attendance to determine the likelihood of passing the exam.

Decision tree models: These are used to make predictions based on a
tree-like structure. Think of it like a decision-making tree for
predictions. You start at the top and follow branches based on known
features. At each branch, you make a decision based on a feature and
keep going until you reach a final prediction at the leaves. It’s a step-by-
step process to find the most likely outcome.

Random forest models: These are ensembles of decision trees. Groups
of decision trees work together. Each tree is trained on a different part of
the data. To make a prediction, all the trees give their answers, and their
predictions are averaged to get the final result. It’s like taking the
opinions of multiple trees to make a more accurate guess.

Gradient boosting models: These are also ensembles of decision trees,
These are groups of decision trees that work together, but here, unlike in
a random forest model, the trees are trained one after the other, and each
tree tries to fix the mistakes of the previous one. They learn from each
other’s errors and become better as a team. It’s like a learning process
where they keep improving until they make good predictions together.

Neural network models: These are complex, multi-layered models that
are able to learn complex patterns in data. These models are capable of
learning intricate patterns in data. They operate using a process of
information analysis, discovering underlying correlations similar to the
functioning of interconnected neurons in the human brain. Through
extensive training and exposure to diverse datasets, the model refines its
ability to decipher complex patterns, making it proficient in uncovering
intricate relationships within new data.

Support vector machines (SVMs): SVMs are powerful classifiers,
acting like incredibly intelligent dividers. Imagine a 3D space with
points representing different things. SVMs determine the most optimal
way to draw a line or plane, called a hyperplane, that perfectly separates
two distinct groups of points. It’s as if they possess an extraordinary
ability to find the perfect boundary, ensuring the two groups are kept as
far apart as possible, such as drawing an invisible but flawless line that
keeps everything perfectly organized on each side.

These are just a few examples of the types of models that can be used with
BYOM in Amazon Redshift. In general, any model that can be represented
as a set of model artifacts and a prediction function can be used with
BYOM in Redshift.

We have learned what Redshift ML BYOM is and its benefits. In the next
section, you will create a BYOM local inference model.

Creating the BYOM local inference model
With BYOM local inference, the machine learning model and its
dependencies are packaged into a group of files and deployed to Amazon
Redshift where the data is stored, allowing users to make predictions on the
stored data. Model artifacts and their dependencies are created when a
model is trained and created on the Amazon SageMaker platform. By
deploying the model directly onto the Redshift service, you are not moving
the data over the network to another service. Local inference can be useful
for scenarios where the data is sensitive or requires low latency predictions.

Let’s start working on creating the BYOM local inference model.

Creating a local inference model

To create the BYOM local inference model, the first step involves training
and validating an Amazon SageMaker model. For this purpose, we will
train and validate an XGBoost linear regression machine learning model on
Amazon SageMaker. Follow the instructions found here to create the
Amazon SageMaker model:

https://github.com/aws/amazon-sagemaker-
examples/blob/main/introduction_to_amazon_algorithms/xgboost_abalone/
xgboost_abalone.ipynb

After you have followed the instructions given at the preceding URL,
validate the model by running prediction functions. Now, let’s move on to
the next steps. After successfully generating the predictions, we will create
the Redshift ML model. Using the same notebook, let’s run a few
commands to set some parameters.

Creating the model and running predictions on
Redshift
Now, validate the model by running prediction functions.

With the model trained and validated in SageMaker, it’s time to import it
into Redshift. In the next section, using the same SageMaker notebook, we
will set up the required parameters to build the Redshift CREATE MODEL
statement. You will use this statement in Query Editor v2 to create your
model in Redshift ML, enabling you to perform local inference on the data
stored in the Redshift cluster with the integrated SageMaker model.

Setting up the parameters

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb

Before setting up the parameters, run the following command in Query
Editor v2 to create the schema for this chapter:

Create schema chapter11_byom;

The first step of this process is setting up the following parameter values:

S3_BUCKET is used to store Redshift ML artifacts.

MODEL_PATH is the S3 location of the model artifact of the Amazon
SageMaker model. Optionally, you can print model_data using the print
function in Python and look at the artifact location.

REDSHIFT_IAM_ROLE is the cluster role:

#provide your s3 bucket here

S3_BUCKET='Redshift ML s3 bucket name'

#provide the model path, this is coming from the model_data

parameter

MODEL_PATH=model_data

#Provide Redshift cluster attached role ARN

REDSHIFT_IAM_ROLE = 'Redshift Cluster IAM Role'

Next, we will generate the CREATE MODEL statement that you are going to run
on Redshift.

Generating the CREATE MODEL statement
Execute the code provided here in a Jupyter notebook to automatically
generate the CREATE MODEL statement:

sql_text=("drop model if exists predict_abalone_age; \

 CREATE MODEL chapter11_byom.predict_abalone_age \

FROM '{}' \

FUNCTION predict_abalone_age (int, int, float,

float,float,float,float,float,float) \

RETURNS int \

IAM_ROLE '{}' \

settings(S3_BUCKET '{}') \

")

print (sql_text.format(model_data,REDSHIFT_IAM_ROLE, S3_BUCKET))

The output of the preceding statement is the CREATE MODEL statement that
you are going to run in Query Editor v2. Please copy the statement and head
over to Query Editor v2 to perform the remaining steps.

Running local inference on Redshift

The following is the CREATE MODEL statement. You should have a similar one
generated, where FROM, IAM_ROLE, and S3_BUCKET have different values:

CREATE MODEL chapter11_byom.predict_abalone_age

FROM 's3://redshift-ml-22-redshiftmlbucket-

1cckvqgktpfe0/sagemaker/DEMO-xgboost-abalone-default/single-

xgboost/DEMO-xgboost-regression-2022-12-31-01-45-

30/output/model.tar.gz'

FUNCTION predict_abalone_age (int, int, float,

float,float,float,float,float,float) RETURNS int IAM_ROLE

'arn:aws:iam::215830312345:role/spectrumrs'

settings(S3_BUCKET 'redshift-ml-22-redshiftmlbucket-

1cckvqgktpfe0') ;

In the preceding command, the FROM clause takes model_data as input,
which contains the SageMaker model artifacts. When this command is run,
Amazon Redshift ML compiles the model, deploys it to Redshift, and
creates a predict_abalone_age prediction function, which is used in an SQL
command to generate predictions natively in Redshift.

Once the CREATE MODEL statement is completed, you can use the show model
command to see the model’s status:

show model chapter11_byom.predict_abalone_age;

Here is the output:

Figure 11.1 – Local inference model metadata

Notice that Model State is READY and S3 Model Path is the one we gave
when creating the model. Inference Type is Local, which means the model
type is local inference.

We have successfully created the local inference model; now, let’s prepare a
test dataset to test whether the local inference is working without any
issues.

Data preparation
Load the test data from the S3 bucket to a Redshift table to test our local
inference model.

NOTE
Please update IAM_ROLE. Do not change the S3 bucket location.

Run the following command to create the table and load the data:

drop table if exists chapter11_byom.abalone_test;

create table chapter11_byom.abalone_test

(Rings int, sex int,Length_ float, Diameter float, Height float,

WholeWeight float, ShuckedWeight float,VisceraWeight float,

ShellWeight float);

copy chapter11_byom.abalone_test

from 's3://jumpstart-cache-prod-us-east-1/1p-notebooks-

datasets/abalone/text-csv/test/'

IAM_ROLE 'arn:aws:iam::212330312345:role/spectrumrs'

csv ;

Sample the test table to make sure the data is loaded:

select * from chapter11_byom.abalone_test limit 10;

Here is the sample dataset:

Figure 11.2 – Showing sample records from the test dataset

Now that we have loaded the test data, let’s run the SELECT command, which
invokes the predict_abalone_age function.

Inference
Now, call the prediction function that was created as part of the CREATE
MODEL statement:

Select original_age, predicted_age, original_age-predicted_age as

Error

From(

select predict_abalone_age(Rings,sex,

Length_ ,

Diameter ,

Height ,

WholeWeight ,

ShuckedWeight ,

VisceraWeight ,

ShellWeight) predicted_age, rings as original_age

from chapter11_byom.abalone_test) a;

Here’s the output of the predictions generated using local inference:

Figure 11.3 – Showing actual versus predicted values

We have successfully trained and validated a SageMaker model and then
deployed it to Redshift ML. We also generated predictions using the local
inference function. This demonstrates Redshift’s BYOM local inference
feature.

In the next section, you are going to learn about the BYOM remote
inference feature.

BYOM using a SageMaker endpoint for
remote inference
In this section, we will explore how to create a BYOM remote inference for
an Amazon SageMaker Random Cut Forest model. This means you are
bringing your own machine learning model, which is trained on data
outside of Redshift, and using it to make predictions on data stored in a
Redshift cluster using an endpoint. In this method, to use BYOM for remote
inference, a machine learning model is trained, an endpoint is created in
Amazon SageMaker, and then the endpoint is accessed from within a
Redshift query using SQL functions provided by the Amazon Redshift ML
extension.

This method is useful when Redshift ML does not natively support models,
for example, a Random Cut Forest model. You can read more about
Random Cut Forest here: https://tinyurl.com/348v8nnw.

To demonstrate this feature, you will first need to follow the instructions
found in this notebook (https://github.com/aws/amazon-sagemaker-
examples/blob/main/introduction_to_amazon_algorithms/random_cut_fores
t/random_cut_forest.ipynb) to create a Random Cut Forest machine

https://tinyurl.com/348v8nnw
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb

learning model using Amazon SageMaker to detect anomalies. Please
complete the Amazon SageMaker model training and validate the model to
make sure the endpoint is working and then proceed to the next section.

Creating BYOM remote inference

Once you have validated that the SageMaker endpoint is deployed and
working properly, let’s define a CREATE MODEL reference point inside
Redshift by specifying the SageMaker endpoint. Using the same notebook,
let’s build the CREATE MODEL statement in Jupyter and run it in Query Editor
v2.

Setting up the parameters
Let’s start by setting up the parameters:

S3_Bucket is used to store Redshift ML artifacts

SAGEMAKER_ENDPOINT is the model endpoint on the SageMaker side to run
inferences against

REDSHIFT_IAM_ROLE is the cluster role:

REDSHIFT_IAM_ROLE = 'arn:aws:iam::215830312345:role/spectrumrs'

SAGEMAKER_ENDPOINT = rcf_inference.endpoint

NOTE
Please update REDSHIFT_IAM_ROLE with your Redshift cluster role.

Generating the BYOM remote inference
command

Let’s generate the CREATE MODEL statement by running the following code:

sql_text=("drop model if exists

chapter11_byom.remote_random_cut_forest;\

CREATE MODEL chapter11_byom.remote_random_cut_forest\

 FUNCTION remote_fn_rcf (int)\

 RETURNS decimal(10,6)\

 SAGEMAKER'{}'\

 IAM_ROLE'{}'\

")

print(sql_text.format(SAGEMAKER_ENDPOINT,REDSHIFT_IAM_ROLE))

You have finished the work with the Jupyter notebook. Now you have a
pre-trained model in Amazon SageMaker and the next step is to bring it into
Redshift ML. To do so, access Query Editor v2, connect to the Serverless
endpoint, and run the commands outlined next.

In Query Editor v2, run the following command:

CREATE MODEL chapter11_byom.remote_random_cut_forest

FUNCTION remote_fn_rcf (int) RETURNS decimal(10,6)

SAGEMAKER'randomcutforest-2022-12-31-03-48-13-259'

IAM_ROLE'arn:aws:iam:: 215830312345:role/spectrumrs'

;

Retrieve the model metadata by running the show model command:

show model chapter11_byom.remote_random_cut_forest;

The output is as follows:

Figure 11.4 – Remote inference model metadata

Notice that in the model metadata, the Model State parameter is set to
READY, indicating that the model is deployed. The Endpoint name is
randomcutforest-2022-12-31-03-48-13-259. Inference Type is set to

Remote inference. When this model is run, Redshift ML sends data stored
in Redshift in batches to SageMaker, where inferences are generated.
Generated predicted values are then sent back to Redshift, which are
eventually presented to the user.

We have successfully deployed the model. In the next section, let’s run
predictions.

The data preparation script
The following code snippet shows the data preparation script that you will
need to run on Redshift. We will create the table that will be used to run
inference on:

COPY chapter11_byom.rcf_taxi_data

FROM 's3://sagemaker-sample-

files/datasets/tabular/anomaly_benchmark_taxi/NAB_nyc_taxi.csv'

IAM_ROLE 'arn:aws:iam::215830312345:role/spectrumrs' ignoreheader

1 csv delimiter ',';

NOTE
Please update the IAM_ROLE parameter with your Redshift cluster attached role.

Sample the data to make sure data is loaded:

select * from chapter11_byom.rcf_taxi_data limit 10;

Here’s the output:

Figure 11.5 – Showing sample records from the test dataset

Now that we have the remote inference endpoint and test dataset, let’s
invoke the prediction function.

Computing anomaly scores
Now, let’s compute the anomaly scores from the entire taxi dataset:

select ride_timestamp, nbr_passengers,

chapter11_byom.remote_fn_rcf(nbr_passengers) as score

from chapter11_byom.rcf_taxi_data;

The following is the output of the remote inference predictions:

Figure 11.6 – Showing remote function prediction values

The preceding output shows the anomalous score for different days and the
number of passengers.

In the following code snippet, we will print any data points with scores
greater than 3 and standard deviations (approximately the 99.9th percentile)
from the mean score:

with score_cutoff as

(select stddev(chapter11_byom.remote_fn_rcf(nbr_passengers)) as

std, avg(chapter11_byom.remote_fn_rcf(nbr_passengers)) as mean, (

mean + 3 * std) as score_cutoff_value

From chapter11_byom.rcf_taxi_data)

select ride_timestamp, nbr_passengers,

chapter11_byom.remote_fn_rcf(nbr_passengers) as score

from chapter11_byom.3rcf_taxi_data

where score > (select score_cutoff_value from score_cutoff)

;

The output is as follows:

Figure 11.7 – Showing unacceptable anomaly scores

In the preceding results, we see that some days’ ridership is way higher and
our remote inference function is flagging them as anomalous. This
concludes the section on bringing remote inference models into Redshift.

Summary
In this chapter, we discussed the benefits and use cases of Amazon Redshift
ML BYOM for local and remote inference. We created two SageMaker
models and then imported them into Redshift ML as local inference and
remote inference model types. We loaded test datasets in Redshift and then
we ran the prediction functions and validated both types. This demonstrates
how Redshift simplifies and empowers the business community to perform
inference on new data using models created outside. This method speeds up
the delivery of machine learning models created outside of Redshift to the
data warehouse team.

In the next chapter, you are going to learn about Amazon Forecast, which
enables you to perform forecasting using Redshift ML.

12

Time-Series Forecasting in Your Data
Warehouse
In previous chapters, we discussed how you can use Amazon Redshift
Machine Learning (ML) to easily create, train, and apply ML models
using familiar SQL commands. We talked about how we can use supervised
learning algorithms for classification or regression problems to predict a
certain outcome. In this chapter, we will talk about how you can use your
data in Amazon Redshift to forecast a certain future event using Amazon
Forecast.

This chapter will introduce you to time-series forecasting on Amazon
Redshift using Amazon Forecast (https://aws.amazon.com/forecast/), a fully
managed time-series forecasting service, using SQL, and without moving
your data or learning new skills. We will guide you through the following
topics:

Forecasting and time-series data

What is Amazon Forecast?

Configuration and security

Creating forecasting models using Redshift ML

Technical requirements

https://aws.amazon.com/forecast/

This chapter requires a web browser and access to the following:

An AWS account

Amazon Redshift

Amazon Redshift query editor v2

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter12/chapter-12.sql.

Forecasting and time-series data
Forecasting is a way of estimating future events, which involves analyzing
historical data and past patterns to derive a possible outcome in the future.
For example, based on historical data, a business can predict their sales
revenue or identify what will happen in the next time period.

Forecasting plays a valuable role in guiding businesses to make informed
decisions about their operations and priorities. Many organizations rely on
data warehouses such as Amazon Redshift to perform deep analytics on
vast amounts of historical and current data, enabling them to drive their
business goals and gauge future success. Acting as a planning tool,
forecasting helps enterprises prepare for future uncertainties by leveraging
past patterns, with the underlying principle that what happened in the past
will likely recur in the future. These predictions are based on analyzing
observations over time within the given timeframe.

Here are some examples of how organizations use forecasting:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter12/chapter-12.sql

Financial planning

Supply and demand planning

Timing the launch of new products or services

Resource planning

Predicting future events, such as sales and revenue earnings

Reviewing management decisions

Looking at a trend graph helps us predict the trend, but a time-series
forecast gives us a better estimate of how it may continue. We can also
model data that doesn’t show any clear pattern or trend over time. When
there is a pattern, we can look at the entire history of the data to see how it
happened before. If there is no pattern, we can rely more on recent data for
forecasting.

Types of forecasting methods

There are two types of forecasting methods: qualitative and quantitative.

Let’s take a look at what qualitative and quantitative methods are, as
defined at https://aws.amazon.com/what-is/forecast/:

Qualitative forecasting is subjective and relies on marketing experts’
opinions to make predictions. You can use these methods when there is
not enough historical data. Some examples of qualitative forecasting
methods are market research such as polls and surveys, and the Delphi
method to collect informed opinions and predict trends.

https://aws.amazon.com/what-is/forecast/

Quantitative forecasting is objective in nature and is used to predict
long-term future trends. It uses historical and current data to forecast
future trends. Some examples of quantitative forecasting methods are
time-series forecasting, econometric modeling, and the indicator
approach.

In this chapter, we will focus on quantitative forecasting using time series
for data, also known as time-series forecasting. Now, let’s look into what
time-series forecasting is.

What is time-series forecasting?

Time-series forecasting is a data science technique that uses ML to study
historical data and predict future trends or behavior in time-series data.
Time-series data is used in many situations, such as weather forecasting,
financial studies, statistics, resource planning, and econometrics. In the
previous chapter, we looked into regression models to predict values using
cross-sectional data, where your input variables are used to determine the
relationship between the variables so that you can predict the unknown
target on sets of data without the target variables.

This data is unique because it arranges data points by time. Time-series data
can be plotted on a graph and these graphs are valuable tools for visualizing
and analyzing the data. In many organizations, data scientists or data
analysts use these graphs to identify forecasting data features or attributes.
Let us look into some examples of time-series data characteristics.

Time trending data

In trending data, the observations are captured at equal time intervals. In
time-series graphs, the y axis is always a unit of time, such as quarter, year,
month, day, hour, minute, or second. In Figure 12.1, we have an example of
the trend of total subscribers by year:

Figure 12.1 – Trend of total subscribers per year

Seasonality

In seasonality observations, we can see periodic fluctuations over time, and
these fluctuations are predictable because we understand the behavior and
the cause based on historical patterns. For example, retailers know that sales
will increase during certain holiday periods. In Figure 12.2, we see an
upward spike in sales for November and December, which is expected
because of the holiday season:

Figure 12.2 – Upward spike due to holiday season

Structural breaks

In structural breaks, we have fluctuations that are less predictable and can
occur at any point in time. For example, during a recession or geo-political
disturbances, the economic situation of a country might show structural
breaks. In Figure 12.3, we can see a visualization of economic growth over
time. The dips indicate an event that occurred at certain data points; for
example, the one in 2009 correlates to the mortgage crisis in the US.

Figure 12.3 – Economic growth over time

Let’s take a look into how Amazon Redshift ML uses Amazon Forecast to
generate models using time-series datasets.

What is Amazon Forecast?
Amazon Forecast, like Amazon Redshift ML, requires no ML experience
to use. Time-series forecasts are generated using various ML and statistical
algorithms based on historical data. As a user, you simply send data to
Amazon Forecast and it will examine the data and automatically identify
what is meaningful and produces a forecasting model.

With Amazon Redshift ML, you can leverage Amazon Forecast to create
and train forecasting models from your time-series data and use these
models to generate forecasts. For forecasting, we require a target time-series
dataset. In target time-series forecasting, we predict the future value of a
variable using the past data or previous values, which is often called
univariate time series because the data is sequential over equal time
increments. Currently, Redshift ML supports target time-series datasets with

a custom domain. The dataset in your data warehouse must contain the
frequency or interval at which you capture your data. For example, you
might record and aggregate the average temperature every hour.

Amazon Forecast automatically trains your model based on an algorithm
using Auto ML and provides six built-in algorithms (to learn more about
the built-in algorithms, please check out this resource:
https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-choosing-
recipes.xhtml#forecast-algos). These forecasting models, known as
predictors, are created using an optimal combination of these algorithms
from your time-series data in Amazon Redshift.

Configuration and security
As Amazon Forecast is a separate fully managed service, you will need to
create or modify your IAM role to include access permissions for your
serverless endpoint or Redshift cluster. Additionally, you should configure a
trust relationship for Amazon Forecast (forecast.amazonaws.com) in the
IAM role to enable the necessary permissions.

You can use the AmazonForecastFullAccess managed policy, which grants
full access to Amazon Forecast and all of the supported operations. You can
attach this policy to your default role but, in your production environments,
you must follow the principle of least-privilege permissions. You may use
more restrictive permissions, such as the following:

 {

 "Version": "2012-10-17",

 "Statement": [

 {

https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-choosing-recipes.xhtml#forecast-algos
http://forecast.amazonaws.com/

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "forecast:DescribeDataset",

 "forecast:DescribeDatasetGroup",

 "forecast:DescribeAutoPredictor",

 "forecast:CreateDatasetImportJob",

 "forecast:CreateForecast",

 "forecast:DescribeForecast",

 "forecast:DescribeForecastExportJob",

 "forecast:CreateMonitor",

 "forecast:CreateForecastExportJob",

 "forecast:CreateAutoPredictor",

 "forecast:DescribeDatasetImportJob",

 "forecast:CreateDatasetGroup",

 "forecast:CreateDataset",

 "forecast:TagResource",

 "forecast:UpdateDatasetGroup"

],

 "Resource": "*"

 } ,

 {

 "Effect": "Allow",

 "Action": [

 "iam:PassRole"

],

 "Resource":"arn:aws:iam::<aws_account_id>:role/service-

role/<Amazon_Redshift_cluster_iam_role_name>"

 }

]

}

Creating forecasting models using
Redshift ML
Currently, if you have to perform forecasting in your data warehouse, you
need to export the dataset into external systems and then apply forecasting
algorithms to create output datasets and then import them back into the data

warehouse for your presentation layer or further analysis. With Redshift
ML’s integration with Amazon Forecast, you don’t have to perform all these
steps. You can now create the forecasting models right on your dataset
within your data warehouse.

In Chapter 5, we talked about the basic CREATE MODEL syntax and its
constructs. Let’s take a look at the CREATE MODEL syntax for forecasting:

CREATE MODEL forecast_model_name

FROM { table_name | (select_query) }

TARGET column_name

IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-

name>' }

AUTO ON MODEL_TYPE FORECAST

[OBJECTIVE optimization_metric]

SETTINGS (S3_BUCKET 'bucket',

 HORIZON integer,

 FREQUENCY forecast_frequency,

 [, PERCENTILES perc_comma_delim_string],

 [S3_GARGABE_COLLECT OFF])

There are a few things to notice with the CREATE MODEL statement for
forecasting.

First, forecast models do not create inference functions. The reason for this
is that when we train a predictor on Amazon Forecast, we specify in the
training request the number (HORIZON) and frequency of predictions
(FREQUENCY) we want to make in the future. Because of this, a trained model
has a fixed forecast, so there isn’t a physical model to compile and execute.
A custom CTAS command (which will be discussed later) is used to extract
a forecast from the training output location in S3 into a table locally in
Redshift.

Next, we can specify the optional objective or optimization metric, which is
used to optimize the predictor for under-forecasting and over-forecasting.
Amazon Forecast provides different model accuracy metrics for you to
assess the strength of your forecasting models, which are listed here:

AverageWeightedQuantileLoss – measures the accuracy of a model at a
specified quantile

WAPE (weighted absolute percentage error) – measures the overall
deviation of forecasted values from the observed value

RMSE (root mean square error) – the square root of the average of
squared errors

MASE (mean absolute scaled error) – calculated by dividing the average
error by a scaling factor

MAPE (mean absolute percentage error) – takes the absolute value of the
percentage error between observed and predicted values for each unit of
time, then averages those values

Lastly, it is important to note that FORECAST does not support any
hyperparameters. Instead, any FORECAST-specific settings for training will be
specified using the SETTINGS clause. Currently, the supported settings are as
follows:

FREQUENCY: Granularity of predictions in a forecast. Valid values are Y
(year), M (month), W (week), D (day), H (hour), and min (minute), for
example, H for hourly forecasts or 1min for forecasts every minute).

HORIZON: The number of time steps in the future to forecast (e.g., 24).

NOTE
FREQUENCY H and HORIZON 24 mean you want hourly forecasts for the next day.

PERCENTILES (optional): The forecast types are used to train a predictor.
Up to five forecast types or percentiles can be specified. These types
can be quantiles [0.01 to 0.99] or mean. A forecast at the 0.50 quantile
will estimate a lower value 50% of the time.

Now, let’s take a look at one use case where we can use the target time-
series dataset for predicting the target forecast value.

Business problem

For this use case, let’s take the example of an online retail store to forecast
the future demand for certain products in the store. This dataset is taken
from the UCI ML repository and is available here:
https://archive.ics.uci.edu/dataset/352/online+retail. For this exercise, we
have modified the data to resemble more of a target time-series dataset,
containing item_id, date, and target_value fields. The data spans a two-
year time period starting from December 2018 to November 2020. The
modified data contains the item name, date products were sold, and total
number of products sold.

DATASET CITATION
Online Retail. (2015). UCI Machine Learning Repository. https://doi.org/10.24432/C5BW33.

Uploading and analyzing the data

https://archive.ics.uci.edu/dataset/352/online+retail
https://doi.org/10.24432/C5BW33

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift and follow the steps outlined
here:

1. Navigate to query editor v2, connect to Serverless endpoint, and
connect to the dev database:

Figure 12.4 – Connecting to the dev database

2. Execute the following steps to create the schema and the trade details
table and load the data:

CREATE SCHEMA chapter12_forecasting;

Create table chapter12_forecasting.web_retail_sales

(invoice_Date date, item_id varchar(500), quantity int);

COPY chapter12_forecasting.web_retail_sales

FROM 's3://packt-serverless-ml-

redshift/chapter12/web_retail_sales.csv'

IAM_ROLE default

FORMAT AS CSV

DELIMITER ','

IGNOREHEADER 1

DATEFORMAT 'YYYY-MM-DD'

REGION AS 'eu-west-1';

3. Run the following query to examine some sample data:

select * from chapter12_forecasting.web_retail_sales;

The result will be similar to this:

Figure 12.5 – Query results

As you can see in the preceding figure, we have the following:

invoice_date (date when the item was sold)

item_id (name of the product sold)

quantity (number of items sold for that product for each day)

Using this dataset, we will create a model in Amazon Forecast and predict
the demand for the future for the given products. The goal is to analyze
what a particular product’s demand is going to look like in the coming five
days. For accuracy and validation, we will create the model using the data
until October 2020. Once we have the predictor ready, we will then
compare the output values with the actual values in November 2020 to
determine the accuracy of our model. We will also take a look at different
accuracy metrics, such as the average weighted quantile loss (wQL),
WAPE, MAPE, MASE, and RMSE.

Let’s create the model using the CREATE MODEL statement we discussed at the
beginning of the Creating forecasting models using Redshift ML section.

Objective is set to AverageWeightedQuantileLoss (mean of wQL), which is
the accuracy metric for optimization_metric. Frequency is set to D (Days),
Horizon is set to 5, and Percentiles is set to 0.25, 0.50, 0.75, 0.90, and
mean.

If you do not specify the percentiles settings, then Forecast generates the
predictions on p10, p50, and p90 (0.10, 0.50, and 0.90).

Run the following command in query editor v2 to create the model. Note
this will take approximately 90 minutes.

CREATE MODEL forecast_sales_demand

FROM (select item_id, invoice_date, quantity

from chapter12_forecasting.web_retail_sales where invoice_date

< '2020-10-31')

TARGET quantity

IAM_ROLE 'arn:aws:your-IAM-Role'

AUTO ON MODEL_TYPE FORECAST

OBJECTIVE 'AverageWeightedQuantileLoss'

SETTINGS (S3_BUCKET '<<bucket name>>',

 HORIZON 5,

 FREQUENCY 'D',

 PERCENTILES '0.25,0.50,0.75,0.90,mean',

 S3_GARBAGE_COLLECT OFF);

Run the SHOW MODEL command to see whether model training is complete:

SHOW MODEL forecast_sales_demand;

The result is as follows:

Figure 12.6 – Result of model training

You can also view the status of the predictor using the value of Training
Job Name shown in the preceding screenshot. Navigate to your AWS
console and type in Amazon Forecast.

Click on View dataset groups and find the dataset group name by pasting
redshiftml_ 20221224001451333090.

Click on this dataset group name and verify whether Target time series
data is Active, as shown in Figure 12.7.

You can also view the details about your time-series data by clicking View
and seeing the schema, frequency of data registered in your data file,
dataset import details, and so on.

Figure 12.7 – Verify the status of target time-series data

Once active, you can view the predictor by clicking View predictors. The
Predictors dialog box will show the training status, as follows:

Figure 12.8 – Training status in View predictors

Run the SHOW MODEL command again to see if model training is complete:

SHOW MODEL forecast_sales_demand;

The result is as follows:

Figure 12.9 – Status of model training completion

Once the model training is finished and ready, you can then view the
outputs by creating a table on your forecast:

For a retail store, the company needs to ensure that they do not over-
forecast or under-forecast the predicted quantity required in order to
effectively manage inventory and enhance profits. As mentioned earlier,
Redshift ML with Amazon Forecast provides different optimization metrics
that can be used in order to measure the accuracy of a model specified at
different quantiles. For this use case, we have created the model for 0.25,
0.50, 0.75, 0.90, and mean. If the emphasis is on over-forecasting, then for a
retailer, choosing a higher quantile (0.90) captures the spike in demand in a
much better way for a high-demand item or product. This suggests that
there is a 90% probability of success for the product to meet the forecasted
demand. Now, let’s see how to get our forecasted results.

Creating a table with output results

After the model has finished training and is ready, we now create a table in
our schema to hold all the forecast results using a simple CTAS command,
as shown:

create table chapter12_forecasting.tbl_forecast_sales_demand as

SELECT

FORECAST(forecast_sales_demand);

In this command, forecast() is a pseudo table function that takes the name
of your model as an input parameter. The data is then pulled from the S3
bucket location where your model results are stored.

Let’s take a look at the output from the preceding table by running the
following SQL command:

select * from chapter12_forecasting.tbl_forecast_sales_demand;

Looking at Figure 12.10, you can see that for each day, Forecast has
generated the output predictions for each distribution point or quantile that
we provided and the mean:

Figure 12.10 – Output of the table

For products in high demand, the retailer can choose a higher quantile, such
as 0.90 (p90), which better captures spikes in demand, rather than
forecasting at the mean or 0.50 quantile.

Now, let’s take a look at the data of a popular product: JUMBO BAG RED
RETROSPOT.

Run the following SQL query:

select a.item_id as product,

a.invoice_date,

a.quantity as actual_quantity ,

p90::int as p90_forecast,

p90::int - a.quantity as p90_error ,mean::int,

p50::int as p50_forecast

from chapter12_forecasting.web_retail_sales a

inner join chapter12_forecasting.tbl_forecast_sales_demand b

on upper(a.item_id) = upper(b.id)

and a.invoice_date = to_date(b.time, 'YYYY-MM-DD')

AND a.item_id = 'JUMBO BAG RED RETROSPOT'

where invoice_date > '2020-10-31'

order by 1,2;

Here’s the result:

Figure 12.11 – Forecast data

To visualize the data, select Chart. For the x axis, choose the invoice_date
attribute, and for the y axis, choose p90_forecast:

Figure 12.12 – Forecast chart

If we closely examine the preceding data in Figure 12.11, we can observe
that Line 1 was under-forecasted, while Lines 2 and 3 were very close to the
actual values, and Line 4 was just slightly over-forecasted. In order to test
the forecasting, you can further perform tests with different sets of data or
even on different quantiles. Additionally, a retailer can use this data for
different products, such as products with low demand, and make use of
other quantiles, such as p50 or mean.

The wQL is used to calculate the AverageWeightedQuantileLoss metric. The
wQL can be used to manage the costs of over- and under-forecasting. These
metrics will be available to you in the Amazon Forecast console for your
predictor. Generally, to calculate the wQL at 0.90, sum the values of the
positive values in above p90 error field and multiply them by a smaller
weight of 0.10, and sum the absolute values of the negative values in p90
error and multiply them by 0.90.

To align with your business outcomes, you can create the forecasting
models at different quantiles (Percentiles) in your Amazon Redshift data
warehouse. This gives you the flexibility to measure your business goals
and keep the impacts on cost on the lower side.

Summary
In this chapter, we discussed how you can use Redshift ML to generate
forecasting models using Amazon Forecast by creating the model for
Forecast Model_Type. You learned about what forecasting is and how time-
series data is used to generate different models for different quantiles. We
also looked at different quantiles and talked briefly about different
optimization metrics.

We showed how forecast models can be used to predict the future quantity
sale for a retailer use case and how they can be used to balance the effect of
over-forecasting and under-forecasting.

In the next chapter, we will look at operational and optimization
considerations.

13

Operationalizing and Optimizing Amazon
Redshift ML Models
Now that you have learned how to create many different types of ML
models, we will show you how you can operationalize your model training
pipelines. Once you have moved your model to production, you want to
refresh the model regularly and automate the process to do this.
Additionally, it is important to periodically evaluate your models to
maintain and improve their accuracy.

In this chapter, we will go through the following main topics:

Operationalizing your ML models

Optimizing the Redshift model for accuracy

Technical requirements
This chapter requires a web browser and access to the following:

An AWS account

An Amazon Redshift Serverless endpoint

Amazon Redshift Query Editor v2

An Amazon EC2 Linux instance (optional)

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/.

Operationalizing your ML models
Once a model is validated and used on a regular basis for running
predictions, it should be operationalized. The reasons for this are to remove
the manual tasks of retraining your models and to ensure that your model
still retains high accuracy after your data distribution has changed over
time, also referred to as data drift. When data drift occurs, you need to
retrain the model using an updated training set.

In the following sections, we will do a simple model retraining, then show
you how you can create a version from an existing model.

Model retraining process without
versioning

To walk through the retraining process, we will use one of our previously
used models.

In Chapter 7, we discussed different regression models, so let’s use the
chapter7_regressionmodel.predict_ticket_price_auto model. This model
solved a multi-input regression problem and SageMaker Autopilot chose
the XGBoost algorithm.

Let’s assume this model is performing well and, based on our data loading
processes, we want to retrain this model weekly.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/

To retrain this model, we must first remove the existing model and then re-
execute the CREATE MODEL command as follows:

DROP MODEL chapter7_RegressionMOdel.predict_ticket_price_auto;

CREATE MODEL chapter7_RegressionMOdel.predict_ticket_price_auto

from

chapter7_RegressionModel.sporting_event_ticket_info_training

TARGET final_ticket_price

FUNCTION predict_ticket_price_auto

IAM_ROLE default

PROBLEM_TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3_bucket <<'your-S3-bucket>>',

s3_garbage_collect off,

max_runtime 9600);

You can set this up to run on a regular schedule using various techniques,
which could include using the Query Editor v2 scheduling feature or
running scripts. For more information on scheduling queries with Query
Editor v2, refer to the following:

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-
schedule-query.xhtml.

The model retraining process with
versioning

This approach of simply dropping and recreating the model might be fine in
some cases, but there is no model history available since we are simply
dropping and recreating the model. This makes comparing the newly
trained model to previous versions very difficult, if not impossible.

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-schedule-query.xhtml

At the time of writing, Redshift ML does not have native versioning
capabilities. However, you can still do versioning by implementing a few
simple SQL techniques and leveraging the bring our own model (BYOM)
capability, which you learned about in Chapter 11.

BYOM is great for leveraging pre-built Amazon SageMaker models in
order to run your inference queries in Amazon Redshift and you can also
use BYOM for models that were built using Redshift ML, which means we
can create a version of an existing model that was previously created by
Redshift ML.

Let’s take a quick refresher on the syntax of BYOM for local inference:

CREATE MODEL model_name

 FROM ('job_name' | 's3_path')

 FUNCTION function_name (data_type [, ...])

 RETURNS data_type

 IAM_ROLE { default }

 [SETTINGS (

 S3_BUCKET 'bucket', | --required

 KMS_KEY_ID 'kms_string') --optional

];

We need the job name, the data types of the model inputs, and the output.
We can get the information we need for the CREATE MODEL statement by
running the SHOW MODEL statement on our existing model. Run the following
command in Query Editor v2:

SHOW MODEL chapter7_regressionmodel.predict_ticket_price_auto;

The result is as follows:

Figure 13.1 – The SHOW MODEL output

The following is the CREATE MODEL statement to create a version of the
current model using the AutoML Job Name value from our SHOW MODEL
command. You will also need to include the function parameter types from
Figure 13.1 in FUNCTION here and include the data type of Target
Column(FINAL_TICKET_PRICE). Note that we append the date (YYYYMMDD) to
the end of the model name and function name to create our version. You can
run the following code in Query Editor v2 to create a version of your
model:

CREATE MODEL

chapter7_regressionmodel.predict_ticket_price_auto_20230624

 FROM 'redshiftml-20221229211311236659'

 FUNCTION predict_ticket_price_auto_20230624 (float8,

 int8, varchar, timestamp, varchar, varchar,

 varchar, varchar, int8, int8, varchar, int8,

 float8, varchar)

 RETURNS float8

 IAM_ROLE default

 SETTINGS (

 S3_BUCKET '<<your S3 Bucket>>');

Run the following SHOW MODEL command:

SHOW MODEL

chapter7_regressionmodel.predict_ticket_price_auto_20230624;

In Figure 13.2, notice that Inference Type shows Local, which designates
this as BYOM with local inference:

Figure 13.2 – The SHOW MODEL output

Now that you have learned how to create a version of a previously trained
Redshift ML model, we will show you how you can automate this process.

Automating the CREATE MODEL
statement for versioning

We have included the scripts here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/tree/main/CodeFiles/chapter13.

You can use these scripts and customize them as needed. These contain all
the components needed to automate the process of performing model
versioning. The example in this chapter uses Bash scripts with RSQL
running on an EC2 instance. If you prefer, you can also install RSQL on
Windows or macOS.

You may find more information on using RSQL to interact with Amazon
Redshift here: https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-
query-tool-getting-started.xhtml.

To download all the code for this book, you may run the commands given
in the following link on an EC2 instance running on Linux or Windows or
on your local Windows or Mac machine:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift.git.

Before running the scripts, we need to create the schema and the table
needed to generate the CREATE MODEL command for the model version. You
can run the following steps in Query Editor v2:

1. Create the schema:

Create schema chapter13;

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter13.%20
https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-query-tool-getting-started.xhtml
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift.git

2. Create the table to contain the metadata needed to auto-generate the
CREATE MODEL command:

create table chapter13.local_inf_ml_model_components

(model_name varchar(500),

schema_name varchar(500),

automlJobName varchar(500),

functionName varchar(500),

inputs_data_type varchar(500),

target_column varchar(50),

returns_data_type varchar(50),

model_arn varchar (500),

S3_Bucket varchar (200));

3. Initialize the local_inf_ml_components table.

Note that you will just need to initialize this table once, with the model
name, schema name, the data type of the target value we are predicting, the
Amazon Resource Name (ARN) of the IAM role, and the S3 bucket to be
used for the Redshift ML artifacts. The table will get updated with the
additional data needed as part of the automation script:

insert into chapter13.local_inf_ml_model_components

values

(

'predict_ticket_price_auto',

'chapter7_regressionmodel',

' ',' ',' ',' ','float8',

'<arn of your IAM ROLE>'

'<your S3 Bucket>)';

Now, we are ready to run the automation script. Figure 13.3 illustrates this
flow using our predict_ticket_price_auto model from Chapter 7. Step 1
creates the model version by using BYOM and appending the timestamp
and Step 2 drops and creates the new model:

Figure 13.3 – Automation script steps 1 and 2

Let’s walk through the steps in Figure 13.3.

Step 1 – creating a version from the existing
model

You may refer to the step1_create_model_version.sh script at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter13

Amazon-Redshift/tree/main/CodeFiles/chapter13 or where you placed the
file after running the git clone command.

The contents of the step1_create_model_version.sh script are also shown
in the following code snippet. As you can see, it calls other scripts and
commands as follows:

#! /bin/bash

create SHOW MODEL sql command

./generate_show_model_sql.sh 'chapter7_regressionmodel.predict_t

icket_price_auto'

#Read SHOW MODEL output and write to file

./show_model.sh

#copy SHOW MODEL output to the model info table

aws s3 cp create_model.txt s3://<your-s3-bucket>>

#load SHOW MODEL output and prep table to generate create model

./prep_create_model.sh

#generate sql to create model version

./generate_create_model_version_sql.sh

#execute the sql to create model verson

./execute_create_model_version.sh

Before you execute this script, read through the following subsections as
they contain instructions on some setup steps.

Creating the show_model_sql command

We have a simple script called generate_show_model_sql.sh with code as
shown here:

#!/bin/bash

modelname=$1

echo $1

echo SHOW MODEL $1 ';' > show_model.sql

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter13

This script takes as input the model name. In the script provided, we have
already supplied the model name in the step1_create_model_version.sh
driver script. You can modify this as needed for your models.

The script creates a SHOW MODEL command that is written to a file called
show_model.sql to be read in the show_model.sh script.

Reading the SHOW MODEL output and writing it to a file

This step executes an Amazon Redshift RSQL script called show_model.sh,
which reads the show_model.sql file and writes the output to a file called
create_model.txt.

Copying the SHOW MODEL output to the model info table

This copies the create_model.txt file into an S3 bucket.

Loading the SHOW MODEL output and prepping the table
to generate CREATE MODEL

This step executes another Amazon Redshift RSQL script called
prep_create_model.sh, which performs the following:

Creates and loads the model_info table

Updates local_inf_ml_model_components from the model_info table so
that the CREATE MODEL statement can be generated for the model version

Inserts the generated CREATE MODEL statement into the create_model_sql
table

Generating the SQL to create the model version

This step calls an Amazon Redshift RSQL script called
generate_create_model_version_sql.sh, which reads the create_model
table and writes the SQL to a text file called model_version.txt.

Executing the SQL to create the model version

This step calls an Amazon Redshift RSQL script called
execute_create_model_version.sh, which creates the version of our
previously created model.

Now you can drop and create your model since we have the model version.

Step 2 – retraining your Redshift ML model to
create a version from the existing model

This step calls an Amazon Redshift RSQL script called retrain_model.sh,
which drops and creates our model. It references retrain_model.sql, which
you can modify for your needs.

Now that you have learned how to automate the process of retraining your
Redshift ML models, let’s discuss how to optimize the accuracy of your
models.

Optimizing the Redshift models’ accuracy
In this section, we will review best practices for maintaining the optimal
accuracy of your models.

You will need to continually monitor your models over time to ensure the
scores stay stable between model training runs. Consider the new version of

the model we created here:

Figure 13.4 – New model output

Create a table similar to this and track each week’s mean square error
(MSE) score from the SHOW MODEL output:

CREATE TABLE chapter13.model_score_history (

 model_name character varying(500),

 schema_name character varying(500),

 score integer,

 variance integer,

 training_date date

)

DISTSTYLE AUTO;

The variance will be the difference in the score of each successive version
of a model.

Check how your models are trending by writing a query like this:

Select model_name, score, variance, training_date

Order by model_name, training_date desc;

If variances are not within a reasonable amount, you will need to look at
ways to improve the model scores.

Let’s explore how we can improve the model quality by using more data
and experimenting with different model types and algorithms.

Model quality

The first best practice is to use more data to improve the model’s quality.
Also, you can add more training time to your model by increasing the
MAX_RUNTIME parameter.

Ensure you are using a representative dataset for training and create at least
a 10% sample for validation.

Experiment with different model types and algorithms to get the best model.
For example, in Chapter 7, we tried two different algorithms for the multi-
input regression models. On the first one, we tried linear learning and we
got an MSE score of 701:

Figure 13.5 – MSE score of the linear learner model type

When we ran it again without specifying the model type, SageMaker
Autopilot chose XGBoost as the model type and it gave a better MSE score
of 0.711260:

Figure 13.6 – MSE score of XGBoost model type

Model explainability

The second best practice is to use the explainability report to better
understand which inputs to your model carried the most weight.

Run the following SQL command in Query Editor v2:

select EXPLAIN_MODEL

('chapter7_regressionmodel.predict_ticket_price_auto')

This returns Shapley values for the inputs used to train the model:

{"explanations":{"kernel_shap":{"label0":

{"expected_value":23.878915786743165,"global_shap_values":

{"away_team":0.050692683450484,"city":0.004979335962039937,"event

_date_time":0.05925819534780525,"event_id":0.31961543069587136,"h

ome_team":0.04245607437910639,"list_ticket_price":36.364129559427

869,"location":0.005178670063000977,"seat":0.011496876723927165,"

seat_level":0.011342097571256795,"seat_row":0.011987498536296578,

"seat_section":12.15498245617505,"sport":0.0029737602051575346,"t

icket_id":0.3184045531012407,"ticketholder":0.005226471657467846}

}}},

"version":"1.0"}

You will notice that list_ticket_price has the highest value of 36.364 –
this means it was the highest weighted input. You can experiment by
removing the input columns with very low weights as inputs to your model
training. Check to see whether you still get the same approximate model
score by removing unnecessary columns for the training input and helping
improve training times.

Probabilit ies

For classification problems, leverage the built-in function that is generated
so that you can see the probability of a given prediction. Refer to Chapter 5
for detailed examples of this.

Let’s now take a look at some useful notebooks that are generated by
Amazon SageMaker Autopilot.

Using SageMaker Autopilot notebooks

Your Autopilot job generates a data exploration notebook and a candidate
definition notebook. To view these notebooks, follow these steps:

1. In the AWS console, search for SageMaker, then choose Amazon
SageMaker:

Figure 13.7 – Choosing Amazon SageMaker

2. Then, choose Studio:

Figure 13.8 – Choosing Studio

3. Next, choose Open Studio:

Figure 13.9 – Choosing Open Studio

4. Next, choose AutoML:

Figure 13.10 – Choosing AutoML

After you choose AutoML, the following screen will show up:

Figure 13.11 – List of model names

5. Choose the model name you want to evaluate. You can get this by using
the AutoML job name from your SHOW MODEL output. In this example, I
used SHOW MODEL on the predict_ticket_price_auto model:

Figure 13.12 – The SHOW MODEL output

You will see output like this:

Figure 13.13 – AutoML best model

In Figure 13.13, you can see a list of models that were trained, and the best
model is highlighted. This also shows the objective of Mse, the values, and
which algorithm was used, and there are links to view the model details, the
candidate generation notebook, and the data exploration notebook.

6. Click on View model details – this is another way you can see feature
importance or explainability:

Figure 13.14 – Feature importance

You can also see the hyperparameters used by SageMaker Autopilot:

Figure 13.15 – Hyperparameters

7. Now, try clicking on Open data exploration notebook:

Figure 13.16 – Data exploration report

This will show you the data exploration report and you can see things such
as Target Analysis, Feature Summary, Duplicate Rows, and other
statistics.

Here is what Target Analysis showed for our predict_ticket_price_auto
model:

Figure 13.17 – Target Analysis

To learn more about the data exploration notebook, you may refer to this
link: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-data-
exploration-report.xhtml.

8. Now, click on Open candidate generation notebook:

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-data-exploration-report.xhtml

Figure 13.18 – Candidate definition notebook

This notebook contains information about the processing steps, algorithms,
and hyperparameters. To learn more about using the candidate generation
notebook, refer to
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-candidate-
generation-notebook.xhtml.

Summary
In this chapter, you learned techniques to operationalize your models in
Amazon Redshift ML.

We discussed how you can create a version of your model. This is important
to track the quality of your model over time and to be able to run inferences
with different versions.

We then showed you how to optimize your Redshift ML models for
accuracy and how you can use the notebooks generated by Amazon
SageMaker Autopilot to deepen your understanding of tasks that Autopilot
is performing.

We hope you have found this book useful. Our goal when we set out to
write this book was to help you gain confidence in these main areas:

Gaining a better understanding of machine learning and how to use it to
solve everyday business problems

Implementing an end-to-end serverless architecture for ingestion,
analytics, and machine learning using Redshift Serverless and Redshift
ML

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-candidate-generation-notebook.xhtml

Creating supervised and unsupervised models, and various techniques to
influence your model

Running inference queries at scale in Redshift to solve a variety of
business problems using models created with Redshift ML or natively
in Amazon SageMaker

We thank you very much for your time and investment in reading this book.
We would welcome your feedback on how we can make Redshift and
Redshift ML better. You can find us on LinkedIn.

Index

As this ebook edition doesn't have fixed pagination, the page numbers
below are hyperlinked for reference only, based on the printed edition of
this book.

A
accuracy 53, 91

Amazon Forecast 224, 225

model accuracy metrics 227

AmazonForecastFullAccess managed policy 225

Amazon Redshift 4

Amazon Redshift Data API 43

data loading 43, 44, 47, 48

table, creating 45-47

Amazon Redshift ML 63-65, 158

data, analyzing 80-84

data, uploading 80-84

Amazon Redshift query editor v2 14, 25, 26

used, for connecting to data warehouse 14-16

Amazon Redshift Serverless 5-8, 25

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

Amazon Resource Name (ARN) 242

Amazon SageMaker 9, 63, 65

Amazon SageMaker Random Cut Forest model

BYOM remote inference, creating for 213, 214

Amazon Simple Storage Service (Amazon S3) 3, 9, 68

Amazon Web Services (AWS) 5

API 6

area under the curve (AUC) 53, 54, 91

artificial intelligence (AI) 174

artificial neural network (ANN) 174

AWS CloudFormation templates 6

AWS Command Line Interface (AWS CLI) 6, 43

AWS console 6

AWS Identity and Access Management (AWS IAM) 8

B
best practices, COPY command 42

binary classification 50, 106

evaluation example 54, 55

binary classification model

creating, with XGBoost 197-200

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

model performance, evaluating 200-203

predictions, generating 200-203

binary classification model training, with XGBoost 109, 113-116

business problem, establishing 109

data, analyzing 110-113

data, uploading 110-113

prediction probabilities 118-120

predictions, running 117

binary model 105

body mass index (BMI) 134

Bring Your Own Model (BYOM) feature 73, 205, 239

benefits 206

local inference 73-76, 205

remote inference 76-78, 205

business problem 175

data, splitting into training and test data sets 178-180

data upload and analysis 175-177

prediction goal 178

BYOM local inference model

CREATE MODEL statement, generating 210

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

creating 208, 209

parameters, setting up 209

predictions, running on Redshift 209

BYOM local inference model, running on Redshift 210, 211

data preparation 211

inference 212

BYOM remote inference

anomaly scores, computing 217, 218

creating 214

creating, for Amazon SageMaker Random Cut Forest model 213, 214

data preparation script 216, 217

generating 214, 215

parameters, setting up 214-216

C
candidate generation notebook

reference link 256

categorical features 193

centroid 159

classification 50, 106

binary classification 50, 106

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

multi-class classification 51, 106

classification algorithms 106

classification models

use cases 107

cluster analysis 158

data grouping through 158, 159

clusters 158

optimal number, determining 159

confusion matrix 54, 55, 102

reference link 102

COPY command 25, 39

best practices 42

file ingestion, automating with 41, 42

used, for loading data from Amazon S3 39

CREATE MODEL command 64-66

AUTO everything 67, 68

automating, for versioning 241, 242

AUTO with user guidance 68-70

Bring your own model (BYOM) 73

K-means (AUTO OFF) 72, 73

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

reference link, for parameters 85

with user guidance 108, 133

XGBoost (AUTO OFF) 71, 72

custom binary classification model

creating, XGBoost with Auto Off used 196

D
data

loading, from Parquet file 39, 40

Data API 14

data definition language (DDL) 26

data drift 238

data exploration notebook

reference link 255

data format parameters

reference link 30

data load, with Amazon Redshift Query Editor v2 26

from Amazon S3 30-34

from local drive 34-38

tables, creating 26-30

data manipulation language (DML) 46

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

data warehouse 3, 4, 38

connecting, Amazon Redshift query editor v2 used 14-16

connecting to 14

query, running 21-23

sample data, loading 16-20

data wrangling 52

decision tree models 207

deep learning 174

deep learning algorithms 173

distribution style, for table

reference link 30

E
Elbow method 159

Euclidean distance formula 159

F

F1 macro score 53

F1 score 53, 55

False Negative 54

False Positive 53, 54

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

feature engineering 52

feature importance 97, 101

feature learning 174

features 64

feedforward artificial neural network 173

file ingestion

automating, with COPY job 41, 42

forecasting 222

qualitative forecasting 223

quantitative forecasting 223

time-series forecasting 223

use cases examples, for organizations 222

forecasting models, creating with Redshift ML 226, 227

business problem 228

data, uploading and analyzing 228-233

table, creating with output results 234, 235

G
Gradient Boosting framework 188

gradient boosting models 207

ground truth 53, 148

I
Identity and Access Management (IAM) roles 3

associating, with AWS console 9, 10

S3 permissions, granting to 10, 11

inference 64

K

Kaggle dataset

reference link 160

K-means clustering algorithm

results, evaluating 169, 170

use cases 159

using 157

K-means ML model

creating 160, 163

data analyzing 162

data uploading 161, 162

five clusters, creating with K value of 5 166

four clusters, creating with K value of 4 166

inputs gathering, for charting elbow 166-169

model syntax overview, creating 161

six clusters, creating with K value of 6 166

three clusters, creating with K value of 3 165

two clusters, creating with K value of 2 163-165

K-Means parameters

reference link 161

L
label 64

Linear Learner 107, 138

customer segment, predicting with 122-124

multi-class classification model, training with 120-122

reference link 108

linear regression 51

multiple linear regression 132

simple linear regression 132

linear regression models 207

local inference 73

logistic regression 51

logistic regression models 207

M

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

Machine Learning (ML) 49, 63, 105

basics 50

benefits 57

challenges of implementation 56

challenges of implementation, overcoming 56, 57

classification problems 50

regression problems 51

supervised learning 50

unsupervised learning 50

use cases 58

Machine Learning (ML), implementation steps

data preparation 52

model evaluation 53

machine learning model

creating 85-91

operationalizing 238

performance 102, 103

re-training process, without versioning 238

re-training process, with versioning 239-241

machine learning model performance evaluation 92

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

ground truth, comparing to predictions 95, 96

predictions, running 93-95

Redshift ML objectives, checking 92, 93

massively parallel processing (MPP) architecture 39

Maternal and Child Health Centers (MCHCs) 134

mean squared deviation (MSD) 159

mean squared error (MSE) 53, 138

model accuracy metrics, Amazon Forecast 227

multi-class classification 51, 106

use cases 51

multi-class classification model 105

predictions, running 184-186

multi-class classification model training, with Linear Learner 120-122

create model options, exploring 127

customer segment, predicting 122-124

model, creating with no user guidance 127, 128

model, creating with user guidance 128, 129

model quality, evaluating 124, 125

prediction queries, running 126, 127

multi-input regression models

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

creating 143-147

Linear Learner algorithm 147, 148

performance evaluation 148-154

prediction query 154, 155

multilayer perceptron (MLP) 107, 138, 173, 205

multiclass classification model, creating 181-184

use cases 175

multiple linear regression 132

N
namespace 8

configuration 9

neural network models 208

numeric variables 193

O

online transaction-processing (OLTP) systems 4

P
Parquet file

data, loading from 39, 40

prediction 64

Q
qualitative forecasting 223

quantitative forecasting 223

R

random forest models 207

Redshift CREATE MODEL syntax 108

Redshift Data API 25

Redshift Machine Learning (Redshift ML) 205

benefits, of using with ML model 207

supported model types 207

Redshift managed storage (RMS) 8

Redshift ML CREATE MODEL 80

syntax 84, 85

Redshift ML model

re-training, to create version from existing model 245

Redshift model accuracy optimization 245, 246

model explainability 248, 249

model quality 246, 247

probabilities 249

SageMaker Autopilot notebooks, using 249-255

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

Redshift processing hours (RPU) 8

regression 50, 51

linear regression 51

logistic regression 51

use case examples 51

regression model 132

evaluation example 53, 54

use cases 133

remote inference 76

root mean square error (RMSE) 53, 141

RSQL, to interact with Amazon Redshift

reference link 241

S
S3 location

reference link 161

SageMaker Autopilot 67, 188, 238

SageMaker AutoPilot algorithm 115

SageMaker Autopilot notebooks

using 249-255

scheduling queries, with Query Editor v2

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

reference link 238

seasonality 224

SHOW MODEL output

copying, to model info table 244

loading 244

reading 244

table, prepping to generate create model 244

writing, to file 244

show_model_sql command

creating 244

simple linear regression 132

simple linear regression model

creating 138-140

creating, with XGBoost 134

data, analyzing 135-137

data, splitting into training and validation set 137

data, uploading 134

prediction goal 135

predictions, running 140-142

sort key

reference link 30

structural breaks 224

Structured Query Language (SQL) 4

sum of squared deviation (SSD) 159

supervised learning 50, 173

support vector machines (SVMs) 208

T
target 64

testing dataset 52

time-series data 222

time-series forecasting 223

time trending data 223

training dataset 52

True Negative 54

True Positive 53, 54

U

underfitting 150

unsupervised learning 50, 107, 173

V

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

validation dataset 52

version, creating from existing model 243

SHOW MODEL output, copying to model info table 244

SHOW MODEL output, loading 244

SHOW MODEL output, reading 244

SHOW MODEL output, writing to file 244

show_model_sql command, creating 244

SQL, executing to create model version 245

SQL, generating to create model version 244

table, prepping to generate create model 244

versioning

create model statement, automating for 241, 242

W
weighted quantile loss (wQL) 229

workgroup 12, 13

X

XGBoost 107, 188, 205

binary classification model, training with 109

reference link 108, 188

used, for creating binary classification model 196-200

XGBoost algorithm 238

XGBoost use case 189

business problem, defining 189

data analyzing 189-192

data preparing, for training 189-192

data, splitting into train and test datasets 193

data uploading 189-192

input variables, preprocessing 193-196

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at packtpub.com and as a print book customer, you are entitled to a discount
on the eBook copy. Get in touch with us at customercare@packtpub.com
for more details.

http://packtpub.com/
http://packtpub.com/
mailto:customercare@packtpub.com

At www.packtpub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

http://www.packtpub.com/

https://packt.link/9781803246888

Enhancing Deep Learning with Bayesian Inference

Matt Benatan, Jochem Gietema, Marian Schneider

ISBN: 9781803246888

Understand advantages and disadvantages of Bayesian inference and
deep learning

Understand the fundamentals of Bayesian Neural Networks

Understand the differences between key BNN
implementations/approximations

Understand the advantages of probabilistic DNNs in production
contexts

How to implement a variety of BDL methods in Python code

How to apply BDL methods to real-world problems

Understand how to evaluate BDL methods and choose the best method
for a given task

Learn how to deal with unexpected data in real-world deep learning
applications

https://packt.link/9781804613429

Natural Language Understanding with Python

Deborah A. Dahl

ISBN: 9781804613429

Explore the uses and applications of different NLP techniques

Understand practical data acquisition and system evaluation workflows

Build cutting-edge and practical NLP applications to solve problems

Master NLP development from selecting an application to deployment

Optimize NLP application maintenance after deployment

Build a strong foundation in neural networks and deep learning for NLU

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Serverless Machine Learning with Amazon Redshift
ML, we’d love to hear your thoughts! If you purchased the book from
Amazon, please click here to go straight to the Amazon review page for this

http://authors.packtpub.com/
https://packt.link/r/1-804-61928-0

book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of
your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-928-5

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email
directly

https://packt.link/free-ebook/978-1-80461-928-5

	Serverless Machine Learning with Amazon Redshift ML
	Foreword
	Contributors
	About the authors
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1:Redshift Overview: Getting Started with Redshift Serverless and an Introduction to Machine Learning
	Chapter 1: Introduction to Amazon Redshift Serverless
	What is Amazon Redshift?
	Getting started with Amazon Redshift Serverless
	What is a namespace?
	What is a workgroup?

	Connecting to your data warehouse
	Using Amazon Redshift query editor v2
	Loading sample data
	Running your first query

	Summary

	Chapter 2: Data Loading and Analytics on Redshift Serverless
	Technical requirements
	Data loading using Amazon Redshift Query Editor v2
	Creating tables
	Loading data from Amazon S3
	Loading data from a local drive

	Data loading from Amazon S3 using the COPY command
	Loading data from a Parquet file
	Automating file ingestion with a COPY job
	Best practices for the COPY command

	Data loading using the Redshift Data API
	Creating table
	Loading data using the Redshift Data API

	Summary

	Chapter 3: Applying Machine Learning in Your Data Warehouse
	Understanding the basics of ML
	Comparing supervised and unsupervised learning
	Classification
	Regression

	Traditional steps to implement ML
	Data preparation
	Evaluating an ML model

	Overcoming the challenges of implementing ML today
	Exploring the benefits of ML
	Application of ML in a data warehouse

	Summary

	Part 2:Getting Started with Redshift ML
	Chapter 4: Leveraging Amazon Redshift ML
	Why Amazon Redshift ML?
	An introduction to Amazon Redshift ML
	A CREATE MODEL overview
	AUTO everything
	AUTO with user guidance
	XGBoost (AUTO OFF)
	K-means (AUTO OFF)
	BYOM

	Summary

	Chapter 5: Building Your First Machine Learning Model
	Technical requirements
	Redshift ML simple CREATE MODEL
	Uploading and analyzing the data

	Diving deep into the Redshift ML CREATE MODEL syntax
	Creating your first machine learning model
	Evaluating model performance
	Checking the Redshift ML objectives
	Running predictions
	Comparing ground truth to predictions
	Feature importance

	Model performance
	Summary

	Chapter 6: Building Classification Models
	Technical requirements
	An introduction to classification algorithms
	Diving into the Redshift CREATE MODEL syntax

	Training a binary classification model using the XGBoost algorithm
	Establishing the business problem
	Uploading and analyzing the data
	Using XGBoost to train a binary classification model
	Running predictions
	Prediction probabilities

	Training a multi-class classification model using the Linear Learner model type
	Using Linear Learner to predict the customer segment
	Evaluating the model quality
	Running prediction queries
	Exploring other CREATE MODEL options

	Summary

	Chapter 7: Building Regression Models
	Technical requirements
	Introducing regression algorithms
	Redshift’s CREATE MODEL with user guidance

	Creating a simple linear regression model using XGBoost
	Uploading and analyzing the data
	Splitting data into training and validation sets
	Creating a simple linear regression model
	Running predictions

	Creating multi-input regression models
	Linear Learner algorithm
	Understanding model evaluation
	Prediction query

	Summary

	Chapter 8: Building Unsupervised Models with K-Means Clustering
	Technical requirements
	Grouping data through cluster analysis
	Determining the optimal number of clusters
	Creating a K-means ML model
	Creating a model syntax overview for K-means clustering
	Uploading and analyzing the data
	Creating the K-means model

	Evaluating the results of the K-means clustering
	Summary

	Part 3:Deploying Models with Redshift ML
	Chapter 9: Deep Learning with Redshift ML
	Technical requirements
	Introduction to deep learning
	Business problem
	Uploading and analyzing the data
	Prediction goal
	Splitting data into training and test datasets

	Creating a multiclass classification model using MLP
	Running predictions

	Summary

	Chapter 10: Creating a Custom ML Model with XGBoost
	Technical requirements
	Introducing XGBoost
	Introducing an XGBoost use case
	Defining the business problem
	Uploading, analyzing, and preparing data for training
	Splitting data into train and test datasets
	Preprocessing the input variables

	Creating a model using XGBoost with Auto Off
	Creating a binary classification model using XGBoost
	Generating predictions and evaluating model performance

	Summary

	Chapter 11: Bringing Your Own Models for Database Inference
	Technical requirements
	Benefits of BYOM
	Supported model types

	Creating the BYOM local inference model
	Creating a local inference model
	Running local inference on Redshift

	BYOM using a SageMaker endpoint for remote inference
	Creating BYOM remote inference
	Generating the BYOM remote inference command

	Summary

	Chapter 12: Time-Series Forecasting in Your Data Warehouse
	Technical requirements
	Forecasting and time-series data
	Types of forecasting methods
	What is time-series forecasting?
	Time trending data
	Seasonality
	Structural breaks

	What is Amazon Forecast?
	Configuration and security
	Creating forecasting models using Redshift ML
	Business problem
	Uploading and analyzing the data
	Creating a table with output results

	Summary

	Chapter 13: Operationalizing and Optimizing Amazon Redshift ML Models
	Technical requirements
	Operationalizing your ML models
	Model retraining process without versioning
	The model retraining process with versioning
	Automating the CREATE MODEL statement for versioning

	Optimizing the Redshift models’ accuracy
	Model quality
	Model explainability
	Probabilities
	Using SageMaker Autopilot notebooks

	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

